Coming from MATLAB, I am looking for some way to create functions in Python which are derived from wrapping C functions. I came across Cython, ctypes, SWIG. My intent is not to improve speed by any factor (it would certainly help though).
Could someone recommend a decent solution for such a purpose. Edit: What's the most popular/adopted way of doing this job?
Thanks.
I've found that weave works pretty well for shorter functions and has a very simple interface.
To give you an idea of just how easy the interface is, here's an example (taken from the PerformancePython website). Notice how multi-dimensional array conversion is handled for you by the converter (in this case Blitz).
from scipy.weave import converters
def inlineTimeStep(self, dt=0.0):
"""Takes a time step using inlined C code -- this version uses
blitz arrays."""
g = self.grid
nx, ny = g.u.shape
dx2, dy2 = g.dx**2, g.dy**2
dnr_inv = 0.5/(dx2 + dy2)
u = g.u
code = """
#line 120 "laplace.py" (This is only useful for debugging)
double tmp, err, diff;
err = 0.0;
for (int i=1; i<nx-1; ++i) {
for (int j=1; j<ny-1; ++j) {
tmp = u(i,j);
u(i,j) = ((u(i-1,j) + u(i+1,j))*dy2 +
(u(i,j-1) + u(i,j+1))*dx2)*dnr_inv;
diff = u(i,j) - tmp;
err += diff*diff;
}
}
return_val = sqrt(err);
"""
# compiler keyword only needed on windows with MSVC installed
err = weave.inline(code,
['u', 'dx2', 'dy2', 'dnr_inv', 'nx', 'ny'],
type_converters=converters.blitz,
compiler = 'gcc')
return err