I am planning to implement a small-scale data acquisition system on an RTOS platform. (Either on a QNX or an RT-Linux system.)
As far as I know, these jobs are performed using C / C++ to get the most out of the system. However I am curious to know and want to learn some experienced people's opinions before I blindly jump into the coding action whether it would be feasible and wiser to write everything in Python (from low-level instrument interfacing through a shiny graphical user interface). If not, mixing with timing-critical parts of the design with "C", or writing everything in C and not even putting a line of Python code.
Or at least wrapping the C code using Python to provide an easier access to the system.
Which way would you advise me to work on? I would be glad if you point some similar design cases and further readings as well.
Thank you
NOTE1: The reason of emphasizing on QNX is due to we already have a QNX 4.25 based data acquisition system (M300) for our atmospheric measurement experiments. This is a proprietary system and we can't access the internals of it. Looking further on QNX might be advantageous to us since 6.4 has a free academic licensing option, comes with Python 2.5, and a recent GCC version. I have never tested a RT-Linux system, don't know how comparable it to QNX in terms of stability and efficiency, but I know that all the members of Python habitat and non-Python tools (like Google Earth) that the new system could be developed on works most of the time out-of-the-box.
I can't speak for every data acquisition setup out there, but most of them spend most of their "real-time operations" waiting for data to come in -- at least the ones I've worked on.
Then when the data does come in, you need to immediately record the event or respond to it, and then it's back to the waiting game. That's typically the most time-critical part of a data acquisition system. For that reason, I would generally say stick with C for the I/O parts of the data acquisition, but there aren't any particularly compelling reasons not to use Python on the non-time-critical portions.
If you have fairly loose requirements -- only needs millisecond precision, perhaps -- that adds some more weight to doing everything in Python. As far as development time goes, if you're already comfortable with Python, you would probably have a finished product significantly sooner if you were to do everything in Python and refactor only as bottlenecks appear. Doing the bulk of your work in Python will also make it easier to thoroughly test your code, and as a general rule of thumb, there will be fewer lines of code and thus less room for bugs.
If you need to specifically multi-task (not multi-thread), Stackless Python might be beneficial as well. It's like multi-threading, but the threads (or tasklets, in Stackless lingo) are not OS-level threads, but Python/application-level, so the overhead of switching between tasklets is significantly reduced. You can configure Stackless to multitask cooperatively or preemptively. The biggest downside is that blocking IO will generally block your entire set of tasklets. Anyway, considering that QNX is already a real-time system, it's hard to speculate whether Stackless would be worth using.
My vote would be to take the as-much-Python-as-possible route -- I see it as low cost and high benefit. If and when you do need to rewrite in C, you'll already have working code to start from.