The GHC user's guide describes the impredicative polymorphism extension with reference to the following example:
f :: Maybe (forall a. [a] -> [a]) -> Maybe ([Int], [Char])
f (Just g) = Just (g [3], g "hello")
f Nothing = Nothing
However, when I define this example in a file and try to call it, I get a type error:
ghci> f (Just reverse)
<interactive>:8:9:
Couldn't match expected type `forall a. [a] -> [a]'
with actual type `[a0] -> [a0]'
In the first argument of `Just', namely `reverse'
In the first argument of `f', namely `(Just reverse)'
In the expression: f (Just reverse)
ghci> f (Just id)
<interactive>:9:9:
Couldn't match expected type `forall a. [a] -> [a]'
with actual type `a0 -> a0'
In the first argument of `Just', namely `id'
In the first argument of `f', namely `(Just id)'
In the expression: f (Just id)
Seemingly only undefined
, Nothing
, or Just undefined
satisfies the type-checker.
I have two questions, therefore:
Just f
for any non-bottom f
?The latter is particularly with the HaskellWiki page on Impredicative Polymorphism in mind, which currently makes a decidedly unconvincing case for the existence of the extension.
Here's an example of how one project, const-math-ghc-plugin, uses ImpredicativeTypes
to specify a list of matching rules.
The idea is that when we have an expression of the form App (PrimOp nameStr) (Lit litVal)
, we want to look up the appropriate rule based upon the primop name. A litVal
will be either a MachFloat d
or MachDouble d
(d
is a Rational
). If we find a rule, we want to apply the function for that rule to d
converted to the correct type.
The function mkUnaryCollapseIEEE
does this for unary functions.
mkUnaryCollapseIEEE :: (forall a. RealFloat a => (a -> a))
-> Opts
-> CoreExpr
-> CoreM CoreExpr
mkUnaryCollapseIEEE fnE opts expr@(App f1 (App f2 (Lit lit)))
| isDHash f2, MachDouble d <- lit = e d mkDoubleLitDouble
| isFHash f2, MachFloat d <- lit = e d mkFloatLitFloat
where
e d = evalUnaryIEEE opts fnE f1 f2 d expr
The first argument needs to have a Rank-2 type, because it will be instantiated at either Float
or Double
depending on the literal constructor. The list of rules looks like this:
unarySubIEEE :: String -> (forall a. RealFloat a => a -> a) -> CMSub
unarySubIEEE nm fn = CMSub nm (mkUnaryCollapseIEEE fn)
subs =
[ unarySubIEEE "GHC.Float.exp" exp
, unarySubIEEE "GHC.Float.log" log
, unarySubIEEE "GHC.Float.sqrt" sqrt
-- lines omitted
, unarySubIEEE "GHC.Float.atanh" atanh
]
This is ok, if a bit too much boilerplate for my taste.
However, there's a similar function mkUnaryCollapsePrimIEEE
. In this case, the rules are different for different GHC versions. If we want to support multiple GHCs, it gets a bit tricky. If we took the same approach, the subs
definition would require a lot of CPP, which can be unmaintainable. Instead, we defined the rules in a separate file for each GHC version. However, mkUnaryCollapsePrimIEEE
isn't available in those modules due to circular import issues. We could probably re-structure the modules to make it work, but instead we defined the rulesets as:
unaryPrimRules :: [(String, (forall a. RealFloat a => a -> a))]
unaryPrimRules =
[ ("GHC.Prim.expDouble#" , exp)
, ("GHC.Prim.logDouble#" , log)
-- lines omitted
, ("GHC.Prim.expFloat#" , exp)
, ("GHC.Prim.logFloat#" , log)
]
By using ImpredicativeTypes
, we can keep a list of Rank-2 functions, ready to use for the first argument to mkUnaryCollapsePrimIEEE
. The alternatives would be much more CPP/boilerplate, changing the module structure (or circular imports), or a lot of code duplication. None of which I would like.
I do seem to recall GHC HQ indicating that they would like to drop support for the extension, but perhaps they've reconsidered. It is quite useful at times.