javadata-structuresred-black-treetop-down

Red Black Tree Top-Down Deletion Algorithm


I am implementing a Red Black Tree with insert, search and delete functions in O (log n) time. Insert and search are working fine. However I am stuck on delete. I found this ppt slide on the internet which shows the algorithm of RBT deletion: http://www.slideshare.net/piotrszymanski/red-black-trees#btnNext on page 56 onwards. I know I am asking a bit too much but I have been stuck on this for over 2 weeks and I can't find the problem. The way I'm understanding Top-Down deletion that you have to rotate and recolor nodes accordingly until you find the predecessor of the node to be deleted. When you do find this node - which would be either a leaf or a node with one right child, replace node to be deleted data by the data of this node and delete this node like normal BST deletion, right?

This is the code I did, based on what I learnt from that slide. If anyone would be so kind to go over it, I would be more than grateful! Or at least if you think there's a better algorithm than what I'm using, please tell me!

 public void delete(int element){

    if (root == null){ 
        System.out.println("Red Black Tree is Empty!");

    } else {

      Node X = root; 
      parent = null; 
      grandParent = null; 
      sibling = null; 

      if (isLeaf(X)){

          if (X.getElement() == element){
              emptyRBT();
          } 

      } else {

      if (checkIfBlack(root.getLeftChild()) && checkIfBlack(root.getRightChild())){
          root.setIsBlack(false);

          if (X.getElement() > element && X.getLeftChild() != null){ 
              X = moveLeft(X);

          } else if (X.getElement() < element && X.getRightChild() != null){
              X = moveRight(X);
          } 

          Step2(X, element);

      } else { 

          Step2B(X, element);

       } 
     }
   } 
   root.setIsBlack(true);
}

public void Step2(Node X, int element)
{
    int dir = -1;

    while (!isLeaf(X)){

      if (predecessor == null){  // still didn't find Node to delete

        if (X.getElement() > element && X.getLeftChild() != null){
            X = moveLeft(X);
            dir = 0;
        } else if (X.getElement() < element && X.getRightChild() != null){
            X = moveRight(X);
            dir = 1;
        } else if (X.getElement() == element){
            toDelete = X;
            predecessor = inorderPredecessor(X.getRightChild());
            X = moveRight(X);
        }

      } else { // if node to delete is already found and X is equal to right node of to delete
               // move always to the left until you find predecessor

          if (X != predecessor){
              X = moveLeft(X);
              dir = 0;
          } 
      }

      if (!isLeaf(X)){
        if (!hasOneNullNode(X)){

         if (checkIfBlack(X.getLeftChild()) && checkIfBlack(X.getRightChild())){
             Step2A(X, element, dir);
         } else {
             Step2B(X, element);
         }
       }
     }
   }

   removeNode(X);

   if (predecessor != null){
       toDelete.setElement(X.getElement());
   }
}

public Node Step2A(Node X, int element, int dir) {

    if (checkIfBlack(sibling.getLeftChild()) && checkIfBlack(sibling.getRightChild())) {
        X = Step2A1(X);

    } else if ((checkIfBlack(sibling.getLeftChild()) == false) && checkIfBlack(sibling.getRightChild())) {
        X = Step2A2(X);

    } else if ((checkIfBlack(sibling.getLeftChild()) && (checkIfBlack(sibling.getRightChild()) == false))) {
        X = Step2A3(X);

    } else if ((checkIfBlack(sibling.getLeftChild()) == false) && (checkIfBlack(sibling.getRightChild()) == false)) {
        X = Step2A3(X);
    }

    return X;
}

public Node Step2A1(Node X) {

    X.setIsBlack(!X.IsBlack());
    parent.setIsBlack(!parent.IsBlack());
    sibling.setIsBlack(!sibling.IsBlack());

    return X;
}

public Node Step2A2(Node X) {

    if (parent.getLeftChild() == sibling){
        LeftRightRotation(sibling.getLeftChild(), sibling, parent);

    } else RightLeftRotation(sibling.getRightChild(), sibling, parent);

    X.setIsBlack(!X.IsBlack());
    parent.setIsBlack(!parent.IsBlack());

    return X;
}

public Node Step2A3(Node X) {

    if (parent.getLeftChild() == sibling){
        leftRotate(sibling);
    } else if (parent.getRightChild() == sibling){
        rightRotate(sibling);  
    }

    X.setIsBlack(!X.IsBlack());
    parent.setIsBlack(!parent.IsBlack());
    sibling.setIsBlack(!sibling.IsBlack());
    sibling.getRightChild().setIsBlack(!sibling.getRightChild().IsBlack());

    return X;
}

public void Step2B(Node X, int element){

    if (predecessor == null){
        if (X.getElement() > element && X.getLeftChild() != null){
            X = moveLeft(X);
        } else if (X.getElement() < element && X.getRightChild() != null){
            X = moveRight(X);
        } else if (X.getElement() == element){
            Step2(X, element);
        }

    } else {

        if (X != predecessor)
            X = moveLeft(X);
        else Step2(X, element);
    }

    if (X.IsBlack()){

       if (parent.getLeftChild() == sibling){
           leftRotate(sibling);
       } else if (parent.getRightChild() == sibling){
           rightRotate(sibling);
       }

       parent.setIsBlack(!parent.IsBlack());
       sibling.setIsBlack(!sibling.IsBlack()); 

       Step2(X, element);

    } else {
        Step2B(X, element);
    }
}

public void removeNode(Node X) {

    if (isLeaf(X)) {
        adjustParentPointer(null, X);
        count--;

    } else if (X.getLeftChild() != null && X.getRightChild() == null) {
        adjustParentPointer(X.getLeftChild(), X);
        count--;

    } else if (X.getRightChild() != null && X.getLeftChild() == null) {
        adjustParentPointer(X.getRightChild(), X);
        count--;
    } 
}

public Node inorderPredecessor(Node node){

   while (node.getLeftChild() != null){
       node = node.getLeftChild();
   }

   return node;
}

public void adjustParentPointer(Node node, Node current) {

    if (parent != null) {

        if (parent.getElement() < current.getElement()) {
            parent.setRightChild(node);
        } else if (parent.getElement() > current.getElement()) {
            parent.setLeftChild(node);
        }
    } else {
        root = node;
    }
}

public boolean checkIfBlack(Node n){
    if (n == null || n.IsBlack() == true){
        return true;
    } else return false;
}

public Node leftRotate(Node n)
{  
    parent.setLeftChild(n.getRightChild());
    n.setRightChild(parent);

    Node gp = grandParent;

    if (gp != null){

        if (gp.getElement() > n.getElement()){
            gp.setLeftChild(n);
        } else if (gp.getElement() < n.getElement()){
            gp.setRightChild(n);
        }

    } else root = n;

    return n;
}

public Node rightRotate(Node n)
{  
    parent.setRightChild(n.getLeftChild());
    n.setLeftChild(parent);

    Node gp = grandParent;

    if (gp != null){

        if (gp.getElement() > n.getElement()){
            gp.setLeftChild(n);
        } else if (gp.getElement() < n.getElement()){
            gp.setRightChild(n);
        }

    } else root = n;

    return n;
}

The node is being deleted, but the tree after deletion would be black violated, which is very wrong.


Solution

  • The eternally confuzzled blog has top-down implementations of both insert and delete for red-black trees. It also goes through case-by-case why it works. I won't replicate it here (it's rather lengthy).

    I've used that blog as a reference for implementing red-black trees in both c++ and java. As I discussed in an earlier answer, I found the implementation to be faster than std::map's bottom-up implementation of red-black trees (whatever STL came with gcc at the time).

    Here's an untested, direct translation of the code to Java. I would highly suggest you test it and morph it to match your style.

    private final static int LEFT = 0;
    private final static int RIGHT = 1;
    
    private static class Node {
        private Node left,right;
        private boolean red;
        ...
    
        // any non-zero argument returns right
        Node link(int direction) {
            return (direction == LEFT) ? this.left : this.right;
        }
        // any non-zero argument sets right
        Node setLink(int direction, Node n) {
            if (direction == LEFT) this.left = n;
            else this.right = n;
            return n;
        }
    }
    
    boolean remove(int data) {
      if ( this.root != null ) {
        final Node head = new Node(-1, null, null); /* False tree root */
        Node cur, parent, grandpa; /* Helpers */
        Node found = null;  /* Found item */
        int dir = RIGHT;
    
        /* Set up helpers */
        cur = head;
        grandpa = parent = null;
        cur.setLink(RIGHT, this.root);
    
        /* Search and push a red down */
        while ( cur.link(dir) != null ) {
          int last = dir;
    
          /* Update helpers */
          grandpa = parent, parent = cur;
          cur = cur.link(dir);
          dir = cur.data < data ? RIGHT : LEFT;
    
          /* Save found node */
          if ( cur.data == data )
            found = cur;
    
          /* Push the red node down */
          if ( !is_red(cur) && !is_red(cur.link(dir)) ) {
            if ( is_red(cur.link(~dir)) )
              parent = parent.setLink(last, singleRotate(cur, dir));
            else if ( !is_red(cur.link(~dir)) ) {
              Node s = parent.link(~last);
    
              if ( s != null ) {
                if (!is_red(s.link(~last)) && !is_red(s.link(last))) {
                  /* Color flip */
                  parent.red = false;
                  s.red = true;
                  cur.red = true;
                }
                else {
                  int dir2 = grandpa.link(RIGHT) == parent ? RIGHT : LEFT;
    
                  if ( is_red(s.link(last)) )
                    grandpa.setLink(dir2, doubleRotate(parent, last));
                  else if ( is_red(s.link(~last)) )
                    grandpa.setLink(dir2, singleRotate(parent, last));
    
                  /* Ensure correct coloring */
                  cur.red = grandpa.link(dir2).red = true;
                  grandpa.link(dir2).link(LEFT).red = false;
                  grandpa.link(dir2).link(RIGHT).red = false;
                }
              }
            }
          }
        }
    
        /* Replace and remove if found */
        if ( found != null ) {
          found.data = cur.data;
          parent.setLink(
            parent.link(RIGHT) == cur ? RIGHT : LEFT,
            cur.link(cur.link(LEFT) == null ? RIGHT : LEFT));
        }
    
        /* Update root and make it black */
        this.root = head.link(RIGHT);
        if ( this.root != null )
          this.root.red = false;
      }
    
      return true;
    }