algorithmdata-structurestreetrieprefix-tree

How can we optimise the creation of a trie if we know the input is in alphabetical order?


I am implementing a prefix tree, with a standard insertion mechanism. If we know we will be given a list of words in alphabetical order, is there any way we can change the insertion to skip a few steps? I am coding in Java, although I'm not looking for code in any particular language. I have considered adding the Nodes for each word to a queue, then hopping backwards through it until we're at a prefix of the next word, but this may be circumventing the whole point of the prefix tree!

Any thoughts on something like this? I'm finding it hard to come up with an implementation that's of any use unless the input is many many very similar words ("aaaaaaaaaab", "aaaaaaaaaac", "aaaaaaaaaad", ...) or something. But even then doing a string comparison on the prefixes is probably a similar cost to just using the prefix tree normally.


Solution

  • There is no way that you can avoid looking at all the characters in the input strings from which you're building the tree. If there was a way to do this, then I could make your algorithm incorrect. In particular, suppose that there is a word w and you don't look at one of its characters (say, the kth character). Then when your algorithm runs and tries to place the word somewhere in the trie, it must be able to place it without knowing all the characters. Therefore, if I change the kth character of the word to something else, your algorithm would put it in exactly the same place as before, which is incorrect because one of the characters in the word won't be correct.

    Since the normal algorithm for constructing a trie takes time proportional to the number of characters in the input, you won't be able to asymptotically outperform it without doing some crazy tricks like parallelizing the construction code or packing the characters into machine words and hitting them with your Hammer of Bit Hackery.

    However, you could potentially get a constant factor speedup. Following large numbers of pointers in a linked structure can be slow due to cache performance, so you could speed up the algorithm by minimizing the number of pointers you have to follow. One thing you could do would be to maintain the position of the end of the last string that you inserted, along with a list (preferably as a dynamic array) of nodes tracing the path back up to the root. To insert a new character, you could do the following:

    1. Find the longest prefix of the string that matches the last string you inserted.
    2. Jump to the pointer in the array marking where that would take you.
    3. Trace the rest of the path down as normal, adding all the nodes that you trace out to the array and overwriting the previous pointers.

    This way, if you insert a lot of words with a common prefix of a reasonable length, you can avoid doing a bunch of pointer-chasing back through a shared part of the structure. This could conceivably give you a performance boost if you have lots of words with the same prefix. It's not asymptotically better than before (and, in fact, uses more memory), but the savings from not following pointers could add up. I haven't tested this, but it seems like it might work.

    Hope this helps!