Is there an OCaml library to take advantage of the 80-bit extended precision floating-point type on the IA-32 and x86-64 architectures?
I know about the MPFR bindings but my ideal library would be more lightweight. Taking advantage of the historical floating-point instructions would be ideal.
The implementation of such a library is possible outside the compiler, thanks to the ffi support of the language.
The library must be split in two parts: the native ocaml source part, and the C runtime part. the OCaml source must contain the datatype declaration, as well as the declaration of all the imported functions. For instance, the add operation would be:
(** basic binary operations on long doubles *)
external add : t -> t -> t = "ml_float80_add"
external sub : t -> t -> t = "ml_float80_sub"
external mul : t -> t -> t = "ml_float80_mul"
external div : t -> t -> t = "ml_float80_div"
in the C code, the ml_float80_add
function should be defined, as described in the OCaml manual:
CAMLprim value ml_float80_add(value l, value r){
float80 rlf = Float80_val(l);
float80 rrf = Float80_val(r);
float80 llf = rlf + rrf;
value res = ml_float80_copy(llf);
return res;
}
Here we convert the OCaml value
runtime representations to native C values, use the binary operator on them, and return a new OCaml value. the ml_float80_copy
function does the allocation of that runtime representation.
Likewise,the C implementations of sub
, mul
and div
functions should be defined there too. One can notice the similarity in signature and implementation of these functions, and abstract away through the use of C macros:
#define FLOAT80_BIN_OP(OPNAME,OP) \
CAMLprim value ml_float80_##OPNAME(value l, value r){ \
float80 rlf = Float80_val(l); \
float80 rrf = Float80_val(r); \
float80 llf = rlf OP rrf; \
value res = ml_float80_copy(llf); \
return res; \
}
FLOAT80_BIN_OP(add,+);
FLOAT80_BIN_OP(sub,-);
FLOAT80_BIN_OP(mul,*);
FLOAT80_BIN_OP(div,/);
The rest of the OCaml and C module should follow.
There are many possibilities as to how encode the float80
C type into an OCaml value. The simplest choice is to use a string, and store in it the raw long double
.
type t = string
On the C side, we define the functions to convert an OCaml value back and forth to a C value:
#include <caml/mlvalues.h>
#include <caml/alloc.h>
#include <caml/misc.h>
#include <caml/memory.h>
#define FLOAT80_SIZE 10 /* 10 bytes */
typedef long double float80;
#define Float80_val(x) *((float80 *)String_val(x))
void float80_copy_str(char *r, const char *l){
int i;
for (i=0;i<FLOAT80_SIZE;i++)
r[i] = l[i];
}
void store_float80_val(value v,float80 f){
float80_copy_str(String_val(v), (const char *)&f);
}
CAMLprim value ml_float80_copy(value r, value l){
float80_copy_str(String_val(r),String_val(l));
return Val_unit;
}
However, that implementation doesn't bring support for the polymorphic comparison functions built into OCaml Pervasive.compare
, and a few other features. Using that function on the above float80 type will mislead the comparison function into beleiving that the values are strings, and do a lexicographical comparison on their content.
Supporting these special features is simple enough though. We redefine the OCaml type as abstract, and change the C code to create and handle custom structs for our float80:
#include <caml/mlvalues.h>
#include <caml/alloc.h>
#include <caml/misc.h>
#include <caml/memory.h>
#include <caml/custom.h>
#include <caml/intext.h>
typedef struct {
struct custom_operations *ops;
float80 v;
} float80_s;
#define Float80_val(x) *((float80 *)Data_custom_val(x))
inline int comp(const float80 l, const float80 r){
return l == r ? 0: (l < r ? -1: 1);
}
static int float80_compare(value l, value r){
const float80 rlf = Float80_val(l);
const float80 rrf = Float80_val(r);
const int llf = comp(rlf,rrf);
return llf;
}
/* other features implementation here */
CAMLexport struct custom_operations float80_ops = {
"float80", custom_finalize_default, float80_compare, float80_hash,
float80_serialize, float80_deserialize, custom_compare_ext_default
};
CAMLprim value ml_float80_copy(long double ld){
value res = caml_alloc_custom(&float80_ops, FLOAT80_SIZE, 0, 1);
Float80_val(res) = ld;
return res;
}
We then propose to build the whole thing using ocamlbuild and a small bash script.