Sometimes it is useful to "clone" a row or column vector to a matrix. By cloning I mean converting a row vector such as
[1, 2, 3]
Into a matrix
[[1, 2, 3],
[1, 2, 3],
[1, 2, 3]]
or a column vector such as
[[1],
[2],
[3]]
into
[[1, 1, 1]
[2, 2, 2]
[3, 3, 3]]
In MATLAB or octave this is done pretty easily:
x = [1, 2, 3]
a = ones(3, 1) * x
a =
1 2 3
1 2 3
1 2 3
b = (x') * ones(1, 3)
b =
1 1 1
2 2 2
3 3 3
I want to repeat this in numpy, but unsuccessfully
In [14]: x = array([1, 2, 3])
In [14]: ones((3, 1)) * x
Out[14]:
array([[ 1., 2., 3.],
[ 1., 2., 3.],
[ 1., 2., 3.]])
# so far so good
In [16]: x.transpose() * ones((1, 3))
Out[16]: array([[ 1., 2., 3.]])
# DAMN
# I end up with
In [17]: (ones((3, 1)) * x).transpose()
Out[17]:
array([[ 1., 1., 1.],
[ 2., 2., 2.],
[ 3., 3., 3.]])
Why wasn't the first method (In [16]
) working? Is there a way to achieve this task in python in a more elegant way?
Here's an elegant, Pythonic way to do it:
>>> array([[1,2,3],]*3)
array([[1, 2, 3],
[1, 2, 3],
[1, 2, 3]])
>>> array([[1,2,3],]*3).transpose()
array([[1, 1, 1],
[2, 2, 2],
[3, 3, 3]])
the problem with [16]
seems to be that the transpose has no effect for an array. you're probably wanting a matrix instead:
>>> x = array([1,2,3])
>>> x
array([1, 2, 3])
>>> x.transpose()
array([1, 2, 3])
>>> matrix([1,2,3])
matrix([[1, 2, 3]])
>>> matrix([1,2,3]).transpose()
matrix([[1],
[2],
[3]])