I'm attempting to write a Prolog meta-interpreter to choose the order of goal execution, for example executing first all goals with the minimum number of parameters.
I started from the vanilla meta-interpreter:
solve2(true).
solve2(A) :- builtin(A), !, A.
solve2((A,B)) :- solve2(A), solve2(B).
solve2(A) :- clause(A,B), solve2(B).
Then i went to something like
solve2(true).
solve2(A) :- builtin(A), !, A.
solve2((A,B)) :- count(A,Args), count(B,Args2), Args<Args2, solve2(A), solve2(B).
solve2((A,B)) :- count(A,Args), count(B,Args2), Args>Args2, solve2(B), solve2(A).
solve2(A) :- clause(A,B), solve2(B).
But if the 4th line is executed then the whole block B is executed before A which is wrong.
Ex. A=a(x,y), B=(b(x,y,z), c(x)) I'd like to execute c, then a, then b. - while in this method i'd get c, b and then a. I'm thinking about transforming the goals in a list but i'm not too sure.
Any ideas?
Here is an (untested) vanilla meta interpreter, with conjunction order changed. I would be glad if you could try with your data.
solve2(true).
solve2(A) :- builtin(A), !, A.
solve2((A,B)) :- ordering(A,B, C,D), ! /* needed */, solve2(C), solve2(D).
solve2(A) :- clause(A,B), solve2(B).
ordering(A,B, C,D) :-
minargs(A, NA),
minargs(B, NB),
( NA =< NB -> C/D=A/B ; C/D=B/A ).
minargs((A,B), N) :-
minargs(A, NA),
minargs(B, NB),
!, ( NA =< NB -> N=NA ; N=NB ).
minargs(T, N) :-
functor(T, _, N).
edit I tested with this setting:
builtin(writeln(_)).
a(1):-writeln(1).
b(1,2):-writeln(2).
c(1,2,3):-writeln(3).
test :-
solve2((c(A,B,_),a(A),b(A,B))).
and got the expected output:
?- test.
1
2
3
true .
edit I had to resort to a list representation, but then it make sense to preprocess the clauses and get the right order before, then stick to plain vanilla interpreter:
test :-
sortjoin((b(A,B),a(A),c(A,B,_)), X),
solve2(X).
sortjoin(J, R) :-
findall(C-P, (pred(J, P), functor(P,_,C)), L),
sort(L, T),
pairs_values(T, V),
join(V, R).
join([C], C).
join([H|T], (H,R)) :- join(T, R).
pred((A, _), C) :-
pred(A, C).
pred((_, B), C) :-
!, pred(B, C).
pred(C, C).
where solve2((A,B)) :- ...
it's the original solve2(A),solve2(B)