I want to calculate the row-wise dot product of two matrices of the same dimension as fast as possible. This is the way I am doing it:
import numpy as np
a = np.array([[1,2,3], [3,4,5]])
b = np.array([[1,2,3], [1,2,3]])
result = np.array([])
for row1, row2 in a, b:
result = np.append(result, np.dot(row1, row2))
print result
and of course the output is:
[ 26. 14.]
Check out numpy.einsum for another method:
In [52]: a
Out[52]:
array([[1, 2, 3],
[3, 4, 5]])
In [53]: b
Out[53]:
array([[1, 2, 3],
[1, 2, 3]])
In [54]: einsum('ij,ij->i', a, b)
Out[54]: array([14, 26])
Looks like einsum
is a bit faster than inner1d
:
In [94]: %timeit inner1d(a,b)
1000000 loops, best of 3: 1.8 us per loop
In [95]: %timeit einsum('ij,ij->i', a, b)
1000000 loops, best of 3: 1.6 us per loop
In [96]: a = random.randn(10, 100)
In [97]: b = random.randn(10, 100)
In [98]: %timeit inner1d(a,b)
100000 loops, best of 3: 2.89 us per loop
In [99]: %timeit einsum('ij,ij->i', a, b)
100000 loops, best of 3: 2.03 us per loop
Note: NumPy is constantly evolving and improving; the relative performance of the functions shown above has probably changed over the years. If performance is important to you, run your own tests with the version of NumPy that you will be using.