I recently came up across a problem/solution that used Loop Do. I seldom have seen this so far in my learning Ruby Programming (I am a beginner with no CS experience).
# Write a function, `nearest_larger(arr, i)` which takes an array and an
# index. The function should return another index, `j`: this should
# satisfy:
#
# (a) `arr[i] < arr[j]`, AND
# (b) there is no `j2` closer to `i` than `j` where `arr[i] < arr[j]`.
#
# In case of ties (see example beow), choose the earliest (left-most)
# of the two indices. If no number in `arr` is largr than `arr[i]`,
# return `nil`.
#
# Difficulty: 2/5
describe "#nearest_larger" do
it "handles a simple case to the right" do
nearest_larger([2,3,4,8], 2).should == 3
end
it "handles a simple case to the left" do
nearest_larger([2,8,4,3], 2).should == 1
end
it "treats any two larger numbers like a tie" do
nearest_larger([2,6,4,8], 2).should == 1
end
it "should choose the left case in a tie" do
nearest_larger([2,6,4,6], 2).should == 1
end
it "handles a case with an answer > 1 distance to the left" do
nearest_larger([8,2,4,3], 2).should == 0
end
it "handles a case with an answer > 1 distance to the right" do
nearest_larger([2,4,3,8], 1).should == 3
end
it "should return nil if no larger number is found" do
nearest_larger( [2, 6, 4, 8], 3).should == nil
end
end
SOLUTION
def nearest_larger(arr, idx)
diff = 1
loop do
left = idx - diff
right = idx + diff
if (left >= 0) && (arr[left] > arr[idx])
return left
elsif (right < arr.length) && (arr[right] > arr[idx])
return right
elsif (left < 0) && (right >= arr.length)
return nil
end
diff += 1
end
end
nearest_larger([2,4,3,8], 1)
Can someone please explain to me when is the best time to use a "loop do" construct instead of the usual "while" or "unless" or "each" construct?
In a language without loop
, you might use a while
construct like:
while( true ) {
# Do stuff until you detect it is done
if (done) break;
}
The point of it is that you start the loop without knowing how many of iterations to perform (or it is hard to calculate in advance), but it is easy to detect when the loop should end. In addition, for a particular case you might find the equivalent while (! done) { # do stuff }
syntax clumsy, because the done condition can happen halfway through the loop, or in multiple places.
Ruby's loop
is basically the same thing as the while( true )
- in fact you can use while( true )
almost interchangeably with it.
In the given example, there are following points of return within each iteration:
if (left >= 0) && (arr[left] > arr[idx])
return left # <-- HERE
elsif (right < arr.length) && (arr[right] > arr[idx])
return right # <-- HERE
elsif (left < 0) && (right >= arr.length)
return nil # <-- HERE
end
There is also an implied "else continue looping" here, if no end conditions are met.
These multiple possible exit points are presumably why the author chose the loop
construct, although there are many ways of solving this problem in practice with Ruby. The given solution code is not necessarily superior to all other possibilities.