I'm trying to read an XML
file into a NumPy
record array. Times are in Zulu time, u'2013-06-06T17:47:38Z'
, and the other columns are floats
.
The times and the floats
can both be converted into NumPy
arrays. However, if I try to make a recordarray
, it fails in a variety of ways (which probably indicate that I don't know how to create record array):
In [124]: dataarr = np.array(zip(*[datadict[k] for k in keys]),
.....: dtype=[(k,dtypes[k]) for k in keys])
Traceback (most recent call last):
File "<ipython-input-124-d59123796cfa>", line 2, in <module>
dtype=[(k,dtypes[k]) for k in keys])
ValueError: Cannot create a NumPy datetime other than NaT with generic units
In [125]: dataarr = np.array([datadict[k] for k in keys],
dtype=[(k,dtypes[k]) for k in keys])
Traceback (most recent call last):
File "<ipython-input-125-ee9077bf1961>", line 2, in <module>
dtype=[(k,dtypes[k]) for k in keys])
TypeError: expected a readable buffer object
In [126]: dataarr = np.array([datadict[k] for k in keys],
dtype=[dtypes[k] for k in keys])
Traceback (most recent call last):
File "<ipython-input-126-a456052bdfd4>", line 2, in <module>
dtype=[dtypes[k] for k in keys])
TypeError: data type not understood
In [127]: dtypes
Out[127]: {'altitude': 'float', 'distance': 'float', 'time': 'datetime64'}
What is the proper approach for creating a recordarray
including times?
(keys
is a list, datadict
and dtype
are dicts)
Whoops, figured it out using numpy datetime64 in recarray
I tried using datetime[D]
, which failed:
In [19]: dtypes
Out[19]: {'altitude': 'float', 'distance': 'float', 'time': 'datetime64[D]'}
In [20]: dataarr = np.array(zip(*[datadict[k] for k in keys]),
dtype=[(k,dtypes[k]) for k in keys])
Traceback (most recent call last):
File "<ipython-input-20-d59123796cfa>", line 2, in <module>
dtype=[(k,dtypes[k]) for k in keys])
TypeError: Cannot cast NumPy timedelta64 scalar from metadata [s] to [D] according to the rule 'same_kind'
but datetime[s]
works:
In [22]: dtypes
Out[22]: {'altitude': 'float', 'distance': 'float', 'time': 'datetime64[s]'}
In [23]: dataarr = np.array(zip(*[datadict[k] for k in keys]),
dtype=[(k,dtypes[k]) for k in keys])