My code:
import math
import cmath
print "E^ln(-1)", cmath.exp(cmath.log(-1))
What it prints:
E^ln(-1) (-1+1.2246467991473532E-16j)
What it should print:
-1
(For Reference, Google checking my calculation)
According to the documentation at python.org cmath.exp(x)
returns e^(x), and cmath.log(x)
returns ln (x), so unless I'm missing a semicolon or something , this is a pretty straightforward three line program.
When I test cmath.log(-1)
it returns πi (technically 3.141592653589793j
). Which is right. Euler's identity says e^(πi) = -1, yet Python says when I raise e^(πi), I get some kind of crazy talk (specifically -1+1.2246467991473532E-16j
).
Why does Python hate me, and how do I appease it?
Is there a library to include to make it do math right, or a sacrifice I have to offer to van Rossum? Is this some kind of floating point precision issue perhaps?
The big problem I'm having is that the precision is off enough to have other values appear closer to 0 than actual zero in the final function (not shown), so boolean tests are worthless (i.e. if(x==0)
) and so are local minimums, etc...
For example, in an iteration below:
X = 2 Y= (-2-1.4708141202500006E-15j)
X = 3 Y= -2.449293598294706E-15j
X = 4 Y= -2.204364238465236E-15j
X = 5 Y= -2.204364238465236E-15j
X = 6 Y= (-2-6.123233995736765E-16j)
X = 7 Y= -2.449293598294706E-15j
3 & 7 are both actually equal to zero, yet they appear to have the largest imaginary parts of the bunch, and 4 and 5 don't have their real parts at all.
Sorry for the tone. Very frustrated.
The problem is inherent to representing irrational numbers (like π) in finite space as floating points.
The best you can do is filter your result and set it to zero if its value is within a given range.
>>> tolerance = 1e-15
>>> def clean_complex(c):
... real,imag = c.real, c.imag
... if -tolerance < real < tolerance:
... real = 0
... if -tolerance < imag < tolerance:
... imag = 0
... return complex(real,imag)
...
>>> clean_complex( cmath.exp(cmath.log(-1)) )
(-1+0j)