To speed up my bignum divisons I need to speed up operation y = x^2
for bigints which are represented as dynamic arrays of unsigned DWORDs. To be clear:
DWORD x[n+1] = { LSW, ......, MSW };
x = x[0]+x[1]<<32 + ... x[N]<<32*(n)
The question is: How do I compute y = x^2
as fast as possible without precision loss?
My current approach is applying multiplication y = x*x
and avoid multiple multiplications.
For example:
x = x[0] + x[1]<<32 + ... x[n]<<32*(n)
For simplicity, let me rewrite it:
x = x0+ x1 + x2 + ... + xn
where index represent the address inside the array, so:
y = x*x
y = (x0 + x1 + x2 + ...xn)*(x0 + x1 + x2 + ...xn)
y = x0*(x0 + x1 + x2 + ...xn) + x1*(x0 + x1 + x2 + ...xn) + x2*(x0 + x1 + x2 + ...xn) + ...xn*(x0 + x1 + x2 + ...xn)
y0 = x0*x0
y1 = x1*x0 + x0*x1
y2 = x2*x0 + x1*x1 + x0*x2
y3 = x3*x0 + x2*x1 + x1*x2
...
y(2n-3) = xn(n-2)*x(n ) + x(n-1)*x(n-1) + x(n )*x(n-2)
y(2n-2) = xn(n-1)*x(n ) + x(n )*x(n-1)
y(2n-1) = xn(n )*x(n )
After a closer look, it is clear that almost all xi*xj
appears twice (not the first and last one) which means that N*N
multiplications can be replaced by (N+1)*(N/2)
multiplications. P.S. 32bit*32bit = 64bit
so the result of every mul+add
operation is handled as 64+1 bit
.
Is there a better way to compute this fast? All I found during searches were sqrts algorithms, not sqr...
Fast sqr
!!! Beware that all numbers in my code are MSW first,... not as in above test (there are LSW first for simplicity of equations, otherwise it would be an index mess).
Current functional fsqr implementation
void arbnum::sqr(const arbnum &x)
{
// O((N+1)*N/2)
arbnum c;
DWORD h, l;
int N, nx, nc, i, i0, i1, k;
c._alloc(x.siz + x.siz + 1);
nx = x.siz - 1;
nc = c.siz - 1;
N = nx + nx;
for (i=0; i<=nc; i++)
c.dat[i]=0;
for (i=1; i<N; i++)
for (i0=0; (i0<=nx) && (i0<=i); i0++)
{
i1 = i - i0;
if (i0 >= i1)
break;
if (i1 > nx)
continue;
h = x.dat[nx-i0];
if (!h)
continue;
l = x.dat[nx-i1];
if (!l)
continue;
alu.mul(h, l, h, l);
k = nc - i;
if (k >= 0)
alu.add(c.dat[k], c.dat[k], l);
k--;
if (k>=0)
alu.adc(c.dat[k], c.dat[k],h);
k--;
for (; (alu.cy) && (k>=0); k--)
alu.inc(c.dat[k]);
}
c.shl(1);
for (i = 0; i <= N; i += 2)
{
i0 = i>>1;
h = x.dat[nx-i0];
if (!h)
continue;
alu.mul(h, l, h, h);
k = nc - i;
if (k >= 0)
alu.add(c.dat[k], c.dat[k],l);
k--;
if (k>=0)
alu.adc(c.dat[k], c.dat[k], h);
k--;
for (; (alu.cy) && (k >= 0); k--)
alu.inc(c.dat[k]);
}
c.bits = c.siz<<5;
c.exp = x.exp + x.exp + ((c.siz - x.siz - x.siz)<<5) + 1;
c.sig = sig;
*this = c;
}
Use of Karatsuba multiplication
(thanks to Calpis)
I implemented Karatsuba multiplication but the results are massively slower even than by use of simple O(N^2)
multiplication, probably because of that horrible recursion that I can't see any way to avoid. It's trade-off must be at really large numbers (bigger than hundreds of digits) ... but even then there are a lot of memory transfers. Is there a way to avoid recursion calls (non-recursive variant,... Almost all recursive algorithms can be done that way). Still, I will try to tweak things up and see what happens (avoid normalizations, etc..., also it could be some silly mistake in the code). Anyway, after solving Karatsuba for case x*x
there is not much performance gain.
Optimized Karatsuba multiplication
Performance test for y = x^2 looped 1000x times, 0.9 < x < 1 ~ 32*98 bits
:
x = 0.98765588997654321000000009876... | 98*32 bits
sqr [ 213.989 ms ] ... O((N+1)*N/2) fast sqr
mul1[ 363.472 ms ] ... O(N^2) classic multiplication
mul2[ 349.384 ms ] ... O(3*(N^log2(3))) optimized Karatsuba multiplication
mul3[ 9345.127 ms] ... O(3*(N^log2(3))) unoptimized Karatsuba multiplication
x = 0.98765588997654321000... | 195*32 bits
sqr [ 883.01 ms ]
mul1[ 1427.02 ms ]
mul2[ 1089.84 ms ]
x = 0.98765588997654321000... | 389*32 bits
sqr [ 3189.19 ms ]
mul1[ 5553.23 ms ]
mul2[ 3159.07 ms ]
After optimizations for Karatsuba, the code is massively faster than before. Still, for smaller numbers it is slightly less than half speed of my O(N^2)
multiplication. For bigger numbers, it is faster with the ratio given by the complexities of Booth multiplications. The threshold for multiplication is around 3298 bits and for sqr around 32389 bits, so if the sum of input bits cross this threshold then Karatsuba multiplication will be used for speeding up multiplication and that goes similar for sqr too.
BTW, optimizations included:
0*y
or x*0
or 0*0
casesx,y
number sizes to power of two to avoid reallocatingz1 = (x0 + x1)*(y0 + y1)
to minimize recursionModified Schönhage-Strassen multiplication to sqr implementation
I have tested use of FFT and NTT transforms to speed up sqr computation. The results are these:
Lose accuracy and therefore need high precision complex numbers. This actually slows things down considerably so no speedup is present. The result is not precise (can be wrongly rounded)so FFT is unusable (for now)
NTT is finite field DFT and so no accuracy loss occurs. It need modular arithmetics on unsigned integers: modpow, modmul, modadd
and modsub
.
I use DWORD
(32bit unsigned integer numbers). The NTT input/otput vector size is limited because of overflow issues!!! For 32-bit modular arithmetics, N
is limited to (2^32)/(max(input[])^2)
so bigint
must be divided to smaller chunks (I use BYTES
so maximum size of bigint
processed is
(2^32)/((2^8)^2) = 2^16 bytes = 2^14 DWORDs = 16384 DWORDs)
The sqr
uses only 1xNTT + 1xINTT
instead of 2xNTT + 1xINTT
for multiplication but NTT usage is too slow and the threshold number size is too large for practical use in my implementation (for mul
and also for sqr
).
Is possible that is even over the overflow limit so 64-bit modular arithmetics should be used which can slow things down even more. So NTT is for my purposes also unusable too.
Some measurements:
a = 0.98765588997654321000 | 389*32 bits
looped 1x times
sqr1[ 3.177 ms ] fast sqr
sqr2[ 720.419 ms ] NTT sqr
mul1[ 5.588 ms ] simpe mul
mul2[ 3.172 ms ] karatsuba mul
mul3[ 1053.382 ms ] NTT mul
My implementation:
void arbnum::sqr_NTT(const arbnum &x)
{
// O(N*log(N)*(log(log(N)))) - 1x NTT
// Schönhage-Strassen sqr
// To prevent NTT overflow: n <= 48K * 8 bit -> result siz <= 12K * 32 bit -> x.siz + y.siz <= 12K!!!
int i, j, k, n;
int s = x.sig*x.sig, exp0 = x.exp + x.exp - ((x.siz+x.siz)<<5) + 2;
i = x.siz;
for (n = 1; n < i; n<<=1)
;
if (n + n > 0x3000) {
_error(_arbnum_error_TooBigNumber);
zero();
return;
}
n <<= 3;
DWORD *xx, *yy, q, qq;
xx = new DWORD[n+n];
#ifdef _mmap_h
if (xx)
mmap_new(xx, (n+n) << 2);
#endif
if (xx==NULL) {
_error(_arbnum_error_NotEnoughMemory);
zero();
return;
}
yy = xx + n;
// Zero padding (and split DWORDs to BYTEs)
for (i--, k=0; i >= 0; i--)
{
q = x.dat[i];
xx[k] = q&0xFF; k++; q>>=8;
xx[k] = q&0xFF; k++; q>>=8;
xx[k] = q&0xFF; k++; q>>=8;
xx[k] = q&0xFF; k++;
}
for (;k<n;k++)
xx[k] = 0;
//NTT
fourier_NTT ntt;
ntt.NTT(yy,xx,n); // init NTT for n
// Convolution
for (i=0; i<n; i++)
yy[i] = modmul(yy[i], yy[i], ntt.p);
//INTT
ntt.INTT(xx, yy);
//suma
q=0;
for (i = 0, j = 0; i<n; i++) {
qq = xx[i];
q += qq&0xFF;
yy[n-i-1] = q&0xFF;
q>>=8;
qq>>=8;
q+=qq;
}
// Merge WORDs to DWORDs and copy them to result
_alloc(n>>2);
for (i = 0, j = 0; i<siz; i++)
{
q =(yy[j]<<24)&0xFF000000; j++;
q |=(yy[j]<<16)&0x00FF0000; j++;
q |=(yy[j]<< 8)&0x0000FF00; j++;
q |=(yy[j] )&0x000000FF; j++;
dat[i] = q;
}
#ifdef _mmap_h
if (xx)
mmap_del(xx);
#endif
delete xx;
bits = siz<<5;
sig = s;
exp = exp0 + (siz<<5) - 1;
// _normalize();
}
Conclusion
For smaller numbers, it is the best option my fast sqr
approach, and after
threshold Karatsuba multiplication is better. But I still think there should be something trivial which we have overlooked. Has anyone other ideas?
NTT optimization
After massively-intense optimizations (mostly NTT): Stack Overflow question Modular arithmetics and NTT (finite field DFT) optimizations.
Some values have changed:
a = 0.98765588997654321000 | 1553*32bits
looped 10x times
mul2[ 28.585 ms ] Karatsuba mul
mul3[ 26.311 ms ] NTT mul
So now NTT multiplication is finally faster than Karatsuba after about 1500*32-bit threshold.
Some measurements and bug spotted
a = 0.99991970486 | 1553*32 bits
looped: 10x
sqr1[ 58.656 ms ] fast sqr
sqr2[ 13.447 ms ] NTT sqr
mul1[ 102.563 ms ] simpe mul
mul2[ 28.916 ms ] Karatsuba mul Error
mul3[ 19.470 ms ] NTT mul
I found out that my Karatsuba (over/under)flows the LSB of each DWORD
segment of bignum. When I have researched, I will update the code...
Also, after further NTT optimizations the thresholds changed, so for NTT sqr it is 310*32 bits = 9920 bits
of operand, and for NTT mul it is 1396*32 bits = 44672 bits
of result (sum of bits of operands).
Karatsuba code repaired thanks to @greybeard
//---------------------------------------------------------------------------
void arbnum::_mul_karatsuba(DWORD *z, DWORD *x, DWORD *y, int n)
{
// Recursion for Karatsuba
// z[2n] = x[n]*y[n];
// n=2^m
int i;
for (i=0; i<n; i++)
if (x[i]) {
i=-1;
break;
} // x==0 ?
if (i < 0)
for (i = 0; i<n; i++)
if (y[i]) {
i = -1;
break;
} // y==0 ?
if (i >= 0) {
for (i = 0; i < n + n; i++)
z[i]=0;
return;
} // 0.? = 0
if (n == 1) {
alu.mul(z[0], z[1], x[0], y[0]);
return;
}
if (n< 1)
return;
int n2 = n>>1;
_mul_karatsuba(z+n, x+n2, y+n2, n2); // z0 = x0.y0
_mul_karatsuba(z , x , y , n2); // z2 = x1.y1
DWORD *q = new DWORD[n<<1], *q0, *q1, *qq;
BYTE cx,cy;
if (q == NULL) {
_error(_arbnum_error_NotEnoughMemory);
return;
}
#define _add { alu.add(qq[i], q0[i], q1[i]); for (i--; i>=0; i--) alu.adc(qq[i], q0[i], q1[i]); } // qq = q0 + q1 ...[i..0]
#define _sub { alu.sub(qq[i], q0[i], q1[i]); for (i--; i>=0; i--) alu.sbc(qq[i], q0[i], q1[i]); } // qq = q0 - q1 ...[i..0]
qq = q;
q0 = x + n2;
q1 = x;
i = n2 - 1;
_add;
cx = alu.cy; // =x0+x1
qq = q + n2;
q0 = y + n2;
q1 = y;
i = n2 - 1;
_add;
cy = alu.cy; // =y0+y1
_mul_karatsuba(q + n, q + n2, q, n2); // =(x0+x1)(y0+y1) mod ((2^N)-1)
if (cx) {
qq = q + n;
q0 = qq;
q1 = q + n2;
i = n2 - 1;
_add;
cx = alu.cy;
}// += cx*(y0 + y1) << n2
if (cy) {
qq = q + n;
q0 = qq;
q1 = q;
i = n2 -1;
_add;
cy = alu.cy;
}// +=cy*(x0+x1)<<n2
qq = q + n; q0 = qq; q1 = z + n; i = n - 1; _sub; // -=z0
qq = q + n; q0 = qq; q1 = z; i = n - 1; _sub; // -=z2
qq = z + n2; q0 = qq; q1 = q + n; i = n - 1; _add; // z1=(x0+x1)(y0+y1)-z0-z2
DWORD ccc=0;
if (alu.cy)
ccc++; // Handle carry from last operation
if (cx || cy)
ccc++; // Handle carry from before last operation
if (ccc)
{
i = n2 - 1;
alu.add(z[i], z[i], ccc);
for (i--; i>=0; i--)
if (alu.cy)
alu.inc(z[i]);
else
break;
}
delete[] q;
#undef _add
#undef _sub
}
//---------------------------------------------------------------------------
void arbnum::mul_karatsuba(const arbnum &x, const arbnum &y)
{
// O(3*(N)^log2(3)) ~ O(3*(N^1.585))
// Karatsuba multiplication
//
int s = x.sig*y.sig;
arbnum a, b;
a = x;
b = y;
a.sig = +1;
b.sig = +1;
int i, n;
for (n = 1; (n < a.siz) || (n < b.siz); n <<= 1)
;
a._realloc(n);
b._realloc(n);
_alloc(n + n);
for (i=0; i < siz; i++)
dat[i]=0;
_mul_karatsuba(dat, a.dat, b.dat, n);
bits = siz << 5;
sig = s;
exp = a.exp + b.exp + ((siz-a.siz-b.siz)<<5) + 1;
// _normalize();
}
//---------------------------------------------------------------------------
My arbnum
number representation:
// dat is MSDW first ... LSDW last
DWORD *dat; int siz,exp,sig,bits;
dat[siz]
is the mantisa. LSDW means least significant DWORD.
exp
is the exponent of MSB of dat[0]
The first nonzero bit is present in the mantissa!!!
// |-----|---------------------------|---------------|------|
// | sig | MSB mantisa LSB | exponent | bits |
// |-----|---------------------------|---------------|------|
// | +1 | 0.(0 ... 0) | 2^0 | 0 | +zero
// | -1 | 0.(0 ... 0) | 2^0 | 0 | -zero
// |-----|---------------------------|---------------|------|
// | +1 | 1.(dat[0] ... dat[siz-1]) | 2^exp | n | +number
// | -1 | 1.(dat[0] ... dat[siz-1]) | 2^exp | n | -number
// |-----|---------------------------|---------------|------|
// | +1 | 1.0 | 2^+0x7FFFFFFE | 1 | +infinity
// | -1 | 1.0 | 2^+0x7FFFFFFE | 1 | -infinity
// |-----|---------------------------|---------------|------|
If I understand your algorithm correctly, it seems O(n^2)
where n
is the number of digits.
Have you looked at Karatsuba Algorithm? It speeds up multiplication using the divide and conquer approach. It may be worth taking a look at.