I need the count the number of decimal digits of a BigInteger
. For example:
99
returns 2
1234
returns 4
9999
returns 4
12345678901234567890
returns 20
I need to do this for a BigInteger
with 184948
decimal digits and more. How can I do this fast and scalable?
The convert-to-String approach is slow:
public String getWritableNumber(BigInteger number) {
// Takes over 30 seconds for 184948 decimal digits
return "10^" + (number.toString().length() - 1);
}
This loop-devide-by-ten approach is even slower:
public String getWritableNumber(BigInteger number) {
int digitSize = 0;
while (!number.equals(BigInteger.ZERO)) {
number = number.divide(BigInteger.TEN);
digitSize++;
}
return "10^" + (digitSize - 1);
}
Are there any faster methods?
This looks like it is working. I haven't run exhaustive tests yet, n'or have I run any time tests but it seems to have a reasonable run time.
public class Test {
/**
* Optimised for huge numbers.
*
* http://en.wikipedia.org/wiki/Logarithm#Change_of_base
*
* States that log[b](x) = log[k](x)/log[k](b)
*
* We can get log[2](x) as the bitCount of the number so what we need is
* essentially bitCount/log[2](10). Sadly that will lead to inaccuracies so
* here I will attempt an iterative process that should achieve accuracy.
*
* log[2](10) = 3.32192809488736234787 so if I divide by 10^(bitCount/4) we
* should not go too far. In fact repeating that process while adding (bitCount/4)
* to the running count of the digits will end up with an accurate figure
* given some twiddling at the end.
*
* So here's the scheme:
*
* While there are more than 4 bits in the number
* Divide by 10^(bits/4)
* Increase digit count by (bits/4)
*
* Fiddle around to accommodate the remaining digit - if there is one.
*
* Essentially - each time around the loop we remove a number of decimal
* digits (by dividing by 10^n) keeping a count of how many we've removed.
*
* The number of digits we remove is estimated from the number of bits in the
* number (i.e. log[2](x) / 4). The perfect figure for the reduction would be
* log[2](x) / 3.3219... so dividing by 4 is a good under-estimate. We
* don't go too far but it does mean we have to repeat it just a few times.
*/
private int log10(BigInteger huge) {
int digits = 0;
int bits = huge.bitLength();
// Serious reductions.
while (bits > 4) {
// 4 > log[2](10) so we should not reduce it too far.
int reduce = bits / 4;
// Divide by 10^reduce
huge = huge.divide(BigInteger.TEN.pow(reduce));
// Removed that many decimal digits.
digits += reduce;
// Recalculate bitLength
bits = huge.bitLength();
}
// Now 4 bits or less - add 1 if necessary.
if ( huge.intValue() > 9 ) {
digits += 1;
}
return digits;
}
// Random tests.
Random rnd = new Random();
// Limit the bit length.
int maxBits = BigInteger.TEN.pow(200000).bitLength();
public void test() {
// 100 tests.
for (int i = 1; i <= 100; i++) {
BigInteger huge = new BigInteger((int)(Math.random() * maxBits), rnd);
// Note start time.
long start = System.currentTimeMillis();
// Do my method.
int myLength = log10(huge);
// Record my result.
System.out.println("Digits: " + myLength+ " Took: " + (System.currentTimeMillis() - start));
// Check the result.
int trueLength = huge.toString().length() - 1;
if (trueLength != myLength) {
System.out.println("WRONG!! " + (myLength - trueLength));
}
}
}
public static void main(String args[]) {
new Test().test();
}
}
Took about 3 seconds on my Celeron M laptop so it should hit sub 2 seconds on some decent kit.