graphcycledepth-first-searchadjacency-list

Detecting cycles in a graph using DFS: 2 different approaches and what's the difference


Note that a graph is represented as an adjacency list.

I've heard of 2 approaches to find a cycle in a graph:

  1. Keep an array of boolean values to keep track of whether you visited a node before. If you run out of new nodes to go to (without hitting a node you have already been), then just backtrack and try a different branch.

  2. The one from Cormen's CLRS or Skiena: For depth-first search in undirected graphs, there are two types of edges, tree and back. The graph has a cycle if and only if there exists a back edge.

Can somebody explain what are the back edges of a graph and what's the diffirence between the above 2 methods.

Thanks.

Update: Here's the code to detect cycles in both cases. Graph is a simple class that represents all graph-nodes as unique numbers for simplicity, each node has its adjacent neighboring nodes (g.getAdjacentNodes(int)):

public class Graph {
  private int[][] nodes; // all nodes; e.g. int[][] nodes = {{1,2,3}, {3,2,1,5,6}...};

  public int[] getAdjacentNodes(int v) {
    return nodes[v];
  }

  // number of vertices in a graph
  public int vSize() {
    return nodes.length;
  }
}

Java code to detect cycles in an undirected graph:

public class DFSCycle {
    private boolean marked[];
    private int s;
    private Graph g;
    private boolean hasCycle;

    // s - starting node
    public DFSCycle(Graph g, int s) {
        this.g = g;
        this.s = s;
        marked = new boolean[g.vSize()];
        findCycle(g,s,s);
    }

    public boolean hasCycle() {
        return hasCycle;
    }

    public void findCycle(Graph g, int v, int u) {

        marked[v] = true;

        for (int w : g.getAdjacentNodes(v)) {
            if(!marked[w]) {
                marked[w] = true;
                findCycle(g,w,v);
            } else if (v != u) {
                hasCycle = true;
                return;
            }
        }

    }  
}

Java code to detect cycles in a directed graph:

public class DFSDirectedCycle {
    private boolean marked[];
    private boolean onStack[];
    private int s;
    private Graph g;
    private boolean hasCycle;

    public DFSDirectedCycle(Graph g, int s) {
        this.s = s
        this.g = g;
        marked = new boolean[g.vSize()];
        onStack = new boolean[g.vSize()];
        findCycle(g,s);
    }

    public boolean hasCycle() {
        return hasCycle;
    }

    public void findCycle(Graph g, int v) {

        marked[v] = true;
        onStack[v] = true;

        for (int w : g.adjacentNodes(v)) {
            if(!marked[w]) {
                findCycle(g,w);
            } else if (onStack[w]) {
                hasCycle = true;
                return;
            }
        }

        onStack[v] = false;
    }
}

Solution

  • Answering my question:

    The graph has a cycle if and only if there exists a back edge. A back edge is an edge that is from a node to itself (selfloop) or one of its ancestor in the tree produced by DFS forming a cycle.

    Both approaches above actually mean the same. However, this method can be applied only to undirected graphs.

    The reason why this algorithm doesn't work for directed graphs is that in a directed graph 2 different paths to the same vertex don't make a cycle. For example: A-->B, B-->C, A-->C - don't make a cycle whereas in undirected ones: A--B, B--C, C--A does.

    Find a cycle in undirected graphs

    An undirected graph has a cycle if and only if a depth-first search (DFS) finds an edge that points to an already-visited vertex (a back edge).

    Find a cycle in directed graphs

    In addition to visited vertices we need to keep track of vertices currently in recursion stack of function for DFS traversal. If we reach a vertex that is already in the recursion stack, then there is a cycle in the tree.

    Update: Working code is in the question section above.