I am a new R user. I have a time series cross-sectional dataset and, although I have found ways to lag time series data in R
, I have not found a way to create lagged time-series cross-sectional variables so that I can use them in my analysis.
Here's how you could use the lag()
function with zoo
(and panel series data):
> library(plm)
> library(zoo)
> data("Produc")
> dnow <- pdata.frame(Produc)
> x.Date <- as.Date(paste(rownames(t(as.matrix(dnow$pcap))), "-01-01", sep=""))
> x <- zoo(t(as.matrix(dnow$pcap)), x.Date)
> x[1:3,1:3]
ALABAMA ARIZONA ARKANSAS
1970-01-01 15032.67 10148.42 7613.26
1971-01-01 15501.94 10560.54 7982.03
1972-01-01 15972.41 10977.53 8309.01
Lag forward by 1:
> lag(x[1:3,1:3],1)
ALABAMA ARIZONA ARKANSAS
1970-01-01 15501.94 10560.54 7982.03
1971-01-01 15972.41 10977.53 8309.01
Lag backward by 1:
> lag(x[1:3,1:3],k=-1)
ALABAMA ARIZONA ARKANSAS
1971-01-01 15032.67 10148.42 7613.26
1972-01-01 15501.94 10560.54 7982.03
As Dirk mentioned, be careful with the meaning of lag in the different time series packages. Notice how xts
treats this differently:
> lag(as.xts(x[1:3,1:3]),k=1)
ALABAMA ARIZONA ARKANSAS
1970-01-01 NA NA NA
1971-01-01 15032.67 10148.42 7613.26
1972-01-01 15501.94 10560.54 7982.03