pythonpandasdataframedictionaryremap

Remap values in pandas column with a dict, preserve NaNs


I have a dictionary which looks like this: di = {1: "A", 2: "B"}

I would like to apply it to the col1 column of a dataframe similar to:

     col1   col2
0       w      a
1       1      2
2       2    NaN

to get:

     col1   col2
0       w      a
1       A      2
2       B    NaN

How can I best do this?


Solution

  • You can use .replace. For example:

    >>> df = pd.DataFrame({'col2': {0: 'a', 1: 2, 2: np.nan}, 'col1': {0: 'w', 1: 1, 2: 2}})
    >>> di = {1: "A", 2: "B"}
    >>> df
      col1 col2
    0    w    a
    1    1    2
    2    2  NaN
    >>> df.replace({"col1": di})
      col1 col2
    0    w    a
    1    A    2
    2    B  NaN
    

    or directly on the Series, i.e. df["col1"].replace(di, inplace=True).