i have an image like this:
after I skeletonize it by scikit image's skeletonize function
from skimage import morphology
out = morphology.skeletonize(gray>0)
There is a way for counting the number of black spaces? (in this picture six) except the background in scikit-image or mahotas?
With this input:
You can do:
>>> from skimage import morphology
>>> import numpy as np
>>> from scipy.misc import imread
>>> im = imread("Bju1h.png")
>>> im = im > 0
>>> np.unique(morphology.label(im))
array([0, 1, 2, 3, 4, 5, 6, 7])
>>> num_components = len(np.unique(morphology.label(im))) - 2
>>> num_components
6
I subtract 2 to ignore the background component and the foreground/line component. From your original image you can skip out the skeletonize step and just run this with im = gray > 0
, since the wide foreground/line will still be labelled as a single component.