I am trying to create an ffdf dataframe by merging and appending two existing ffdf dataframes. The ffdfs have different numbers of columns and different row numbers. I know that merge()
performs only inner and left outer joins while ffdfappend()
will not allow appending if columns are not identical. I am wondering if anyone has a workaround for this. Either a function like the smartbind()
function in the gtools package
or any other workaround.
Of course converting back to as.data.frame()
and using smartbind()
is not an option because of the size of the ffdfs.
Any help would be greatly appreciated.
Edit: As per suggesting here is a reproducible example:
require(ff)
require(ffbase)
df1 <- data.frame(A=1:10, B=LETTERS[1:10], C=rnorm(10), G=1 )
df2 <- data.frame(A=11:20, D=rnorm(10), E=letters[1:10], G=1 )
ffdf1 <- as.ffdf(df1)
ffdf2 <- as.ffdf(df2)
The desired result should look something like this (produced on the data.frames, if I knew how to produce it on the ffdfs I would not be asking the question):
require(gtools)
dfcombined <- smartbind(df1, df2)
dfcombined
A B C G D E
1:1 1 A 1.1556719 1 NA <NA>
1:2 2 B 0.3279260 1 NA <NA>
1:3 3 C 0.4067643 1 NA <NA>
1:4 4 D -0.9144717 1 NA <NA>
1:5 5 E -0.1138263 1 NA <NA>
1:6 6 F 0.8227560 1 NA <NA>
1:7 7 G 0.3394098 1 NA <NA>
1:8 8 H 1.4498439 1 NA <NA>
1:9 9 I -1.3202419 1 NA <NA>
1:10 10 J 0.2099266 1 NA <NA>
2:1 11 <NA> NA 1 -1.5802636 a
2:2 12 <NA> NA 1 1.2925790 b
2:3 13 <NA> NA 1 1.3477483 c
2:4 14 <NA> NA 1 -1.6760211 d
2:5 15 <NA> NA 1 0.1456295 e
2:6 16 <NA> NA 1 0.4726867 f
2:7 17 <NA> NA 1 -1.5209117 g
2:8 18 <NA> NA 1 0.3407136 h
2:9 19 <NA> NA 1 1.3582868 i
2:10 20 <NA> NA 1 -1.5083929 j
I hope this makes it clearer what I try to achieve.
If you are looking for something like rbind.fill
but for ffdf objects. Maybe this is what you are looking for. This worked for me without memory issues on the test example Jan prepared.
require(ff)
require(ffbase)
smartffdfbind <- function(..., clone=TRUE){
x <- list(...)
columns <- lapply(x, FUN=function(x) colnames(x))
columns <- do.call(c, columns)
columns <- unique(columns)
for(element in 1:length(x)){
missingcolumns <- setdiff(columns, colnames(x[[element]]))
for(missingcolumn in missingcolumns){
x[[element]][[missingcolumn]] <- ff(NA, vmode = "logical", length = nrow(x[[element]]))
}
}
if(clone){
result <- clone(x[[1]][columns])
}else{
result <- x[[1]][columns]
}
for (l in tail(x, -1)) {
result <- ffdfappend(result[columns], l[columns], recode=TRUE)
}
result
}
ffdf1 <- ffdf(a = ffrandom(1E8, rnorm), b = ffrandom(1E8, rnorm))
ffdf2 <- ffdf(b = ffrandom(1E8, rnorm), c = ffrandom(1E8, rnorm))
x <- smartffdfbind(ffdf1, ffdf2)
nrow(x)
[1] 200000000
class(x)
"ffdf"