pythonperformancefor-looplist-comprehensionmap-function

Are list-comprehensions and functional functions faster than "for loops"?


In terms of performance in Python, is a list-comprehension, or functions like map(), filter() and reduce() faster than a for loop? Why, technically, they run in a C speed, while the for loop runs in the python virtual machine speed?.

Suppose that in a game that I'm developing I need to draw complex and huge maps using for loops. This question would be definitely relevant, for if a list-comprehension, for example, is indeed faster, it would be a much better option in order to avoid lags (Despite the visual complexity of the code).


Solution

  • The following are rough guidelines and educated guesses based on experience. You should timeit or profile your concrete use case to get hard numbers, and those numbers may occasionally disagree with the below.

    A list comprehension is usually a tiny bit faster than the precisely equivalent for loop (that actually builds a list), most likely because it doesn't have to look up the list and its append method on every iteration. However, a list comprehension still does a bytecode-level loop:

    >>> dis.dis(<the code object for `[x for x in range(10)]`>)
     1           0 BUILD_LIST               0
                 3 LOAD_FAST                0 (.0)
           >>    6 FOR_ITER                12 (to 21)
                 9 STORE_FAST               1 (x)
                12 LOAD_FAST                1 (x)
                15 LIST_APPEND              2
                18 JUMP_ABSOLUTE            6
           >>   21 RETURN_VALUE
    

    Using a list comprehension in place of a loop that doesn't build a list, nonsensically accumulating a list of meaningless values and then throwing the list away, is often slower because of the overhead of creating and extending the list. List comprehensions aren't magic that is inherently faster than a good old loop.

    As for functional list processing functions: While these are written in C and probably outperform equivalent functions written in Python, they are not necessarily the fastest option. Some speed up is expected if the function is written in C too. But most cases using a lambda (or other Python function), the overhead of repeatedly setting up Python stack frames etc. eats up any savings. Simply doing the same work in-line, without function calls (e.g. a list comprehension instead of map or filter) is often slightly faster.

    Suppose that in a game that I'm developing I need to draw complex and huge maps using for loops. This question would be definitely relevant, for if a list-comprehension, for example, is indeed faster, it would be a much better option in order to avoid lags (Despite the visual complexity of the code).

    Chances are, if code like this isn't already fast enough when written in good non-"optimized" Python, no amount of Python level micro optimization is going to make it fast enough and you should start thinking about dropping to C. While extensive micro optimizations can often speed up Python code considerably, there is a low (in absolute terms) limit to this. Moreover, even before you hit that ceiling, it becomes simply more cost efficient (15% speedup vs. 300% speed up with the same effort) to bite the bullet and write some C.