I want to implement an algorithm using the ST
monad and STUArray
s, and I want it to be able to work with both Float
and Double
data.
I'll demonstrate on a simpler example problem: calculating a memoized scanl (+) 0
(I know it can be solved without STUArray
, just using as example).
{-# LANGUAGE FlexibleContexts, ScopedTypeVariables #-}
import Control.Monad
import Control.Monad.ST
import Data.Array.Unboxed
import Data.Array.ST
accumST :: forall a. (IArray UArray a, Num a) => [a] -> Int -> a
accumST vals = (!) . runSTUArray $ do
arr <- newArray (0, length vals) 0 :: ST s (STUArray s Int a)
forM_ (zip vals [1 .. length vals]) $ \(val, i) ->
readArray arr (i - 1)
>>= writeArray arr i . (+ val)
return arr
This fails with:
Could not deduce (MArray (STUArray s) a (ST s)) from the context ()
arising from a use of 'newArray'
Possible fix:
add (MArray (STUArray s) a (ST s)) to the context of
an expression type signature
or add an instance declaration for (MArray (STUArray s) a (ST s))
I can't apply the suggested "Possible fix". Because I need to add something like (forall s. MArray (STUArray s) a (ST s))
to the context, but afaik that's impossible..
Unforunately, you can't currently create a context that requires that an unboxed array be available for a specific type. Quantified Constraints aren't allowed. However, you can still accomplish what you're trying to do, (with the added advantage of having type-specific code versions.) For Longer functions, you could try to split out common expressions so that the repeated code is as small as possible.
{-# LANGUAGE FlexibleContexts, ScopedTypeVariables #-}
module AccumST where
import Control.Monad
import Control.Monad.ST
import Data.Array.Unboxed
import Data.Array.ST
import Data.Array.IArray
-- General one valid for all instances of Num.
-- accumST :: forall a. (IArray UArray a, Num a) => [a] -> Int -> a
accumST :: forall a. (IArray UArray a, Num a) => [a] -> Int -> a
accumST vals = (!) . runSTArray $ do
arr <- newArray (0, length vals) 0 :: (Num a) => ST s (STArray s Int a)
forM_ (zip vals [1 .. length vals]) $ \(val, i) ->
readArray arr (i - 1)
>>= writeArray arr i . (+ val)
return arr
accumSTFloat vals = (!) . runSTUArray $ do
arr <- newArray (0, length vals) 0 :: ST s (STUArray s Int Float)
forM_ (zip vals [1 .. length vals]) $ \(val, i) ->
readArray arr (i - 1)
>>= writeArray arr i . (+ val)
return arr
accumSTDouble vals = (!) . runSTUArray $ do
arr <- newArray (0, length vals) 0 :: ST s (STUArray s Int Double)
forM_ (zip vals [1 .. length vals]) $ \(val, i) ->
readArray arr (i - 1)
>>= writeArray arr i . (+ val)
return arr
{-# RULES "accumST/Float" accumST = accumSTFloat #-}
{-# RULES "accumST/Double" accumST = accumSTDouble #-}
The Generic Unboxed version (which doesn't work) would have a type constraint like the following:
accumSTU :: forall a. (IArray UArray a, Num a,
forall s. MArray (STUArray s) a (ST s)) => [a] -> Int -> a
You could simplify as follows:
-- accumST :: forall a. (IArray UArray a, Num a) => [a] -> Int -> a
accumST :: forall a. (IArray UArray a, Num a) => [a] -> Int -> a
accumST vals = (!) . runSTArray $ do
arr <- newArray (0, length vals) 0 :: (Num a) => ST s (STArray s Int a)
accumST_inner vals arr
accumST_inner vals arr = do
forM_ (zip vals [1 .. length vals]) $ \(val, i) ->
readArray arr (i - 1)
>>= writeArray arr i . (+ val)
return arr
accumSTFloat vals = (!) . runSTUArray $ do
arr <- newArray (0, length vals) 0 :: ST s (STUArray s Int Float)
accumST_inner vals arr
accumSTDouble vals = (!) . runSTUArray $ do
arr <- newArray (0, length vals) 0 :: ST s (STUArray s Int Double)
accumST_inner vals arr
{-# RULES "accumST/Float" accumST = accumSTFloat #-}
{-# RULES "accumST/Double" accumST = accumSTDouble #-}