From the bibliography of chapter 1 of the 1962 A Programming Language, I found this intriguingly concise description of a forward-Polish (Lukasiewicz) Logic Machine. And I think I'm with it up to this part on the Logic Function F:
What does (2a) mean? How is this a function?
Here's my implementation (in PostScript) of everything up to that part (completed Postscript, C version):
%http://www.ams.org/journals/mcom/1954-08-046/
/L{length}def % length of string
/T{ % i D tail(i) of string
2 copy L le{ % i<=L(D)
dup length 2 index sub % i D L(D)-i
3 2 roll getinterval % D[L-i.*i]
}{ % i>L(D)
exch pop % D
}ifelse
}def
/H{ % i D head(i) of string
2 copy L le{ % i<=L(D)
0 % i D 0
3 2 roll getinterval % D[0.*i]
}{
exch pop % D
}ifelse
}def
/Wtab 1 dict def
1 0 1 255{Wtab exch 2 index put}for pop
0 (N) {Wtab exch 2 index put}forall pop
-1 (KA) {Wtab exch 2 index put}forall pop
/W{ % weight of string or char
dup type /integertype eq {
Wtab exch get
}{
0 exch { W add } forall
}ifelse
}def
%Wtab{exch =only( )=only =}forall
%(KAxyz)W =
/D{ % D(d) = 1 - W(d)
1 exch W sub
}def
/Wmax{ % Wmax(D) = Max(W[T_i(D)]) for i > 0
[ exch
0 1 2 index L { % [ ... D i
1 index T % [ ... D T(i,D)
W
exch % [ ... W(T(i,D)) D
} for
pop % [ ... W(T(i,D))
counttomark 0 eq { pop 0 }{
{
counttomark 1 eq { exch pop exit } if
2 copy lt { exch } if pop
}loop
}ifelse
}def
/Wmin{ % Wmin(D) = Min(W[T_i(D)]) for i > 0
[ exch
0 1 2 index L { % [ ... D i
1 index T % [ ... D T(i,D)
W
exch % [ ... W(T(i,D)) D
} for
pop % [ ... W(T(i,D))
counttomark 0 eq { pop 0 }{
{
counttomark 1 eq { exch pop exit } if
2 copy gt { exch } if pop
} loop
}ifelse
}def
%(KAxyz) Wmax =
%(KAxyz) Wmin =
/PF{ % D is positive formula
Wmin 0 gt
}def
/WFF{ % D is well-formed formula
dup PF exch W 1 eq and
}def
/P(01)def
P{
W 1 ne {ERROR:W_p!=1} if
}forall
/Ptab <<
P {
dup
} forall
>>def
/F{
dup D 0 gt {
}{
}ifelse
}def
Hm. Ok. I think I'm starting to get it. P is the data alphabet, just 0
and 1
. And ignoring the bizarre way they defined it, the Degree function D
of "K"
yields 2. So this (2a) is just notating the variable-capture from the input string, little-delta. In other words, the input string little-delta is implicitly partitioned into a new little-delta (in the example, this is the character K
) and its 2 (degree=2, right?) arguments, πD(δ) .. π1, which is defined as this list so it can extend to any arity. The εP part just means that F must yield 0
or 1
, or more generally, an element of P
F itself is a parameter to the whole thing. It was right at the top. I forgot.
So here's the implementation of the functions K
, A
, and N
. F controls when to call them, but they have to crack their own arguments from the string.
/P(01)def
P{
W 1 ne {ERROR:W_p!=1} if
}forall
/Ptab <<
P {
dup
} forall
>>def
/iP{ % i <- P
P exch search pop length exch pop exch pop
}def
/Pi{ % P <- i
P exch 1 getinterval
}def
/F{
dup 0 get
D 0 gt { % ie. an operator
dup 0 get % (...) K|A|N
exch % K|A|N (...)
1 1 index length 1 sub getinterval % kan (..)
exch Ftab exch get exec % F(d,..)
}{ % leave it alone. F(p)=p
}ifelse
}def
/Ftab <<
(K)0 get { % crack 2 args from string and convert to indices
dup 0 1 getinterval iP
exch 1 1 getinterval iP
and
Pi % convert result back to alphabet P
}
(A)0 get {
dup 0 1 getinterval iP
exch 1 1 getinterval iP
xor
Pi
}
(N)0 get {
0 1 getinterval iP
1 add 2 mod
Pi
}
>>def
(K00) F =
(K01) F =
(K10) F =
(K11) F =
ghostscript output:
0
0
0
1
Aw. Sheesh. They totally say the same thing on the next page.