rspatial-interpolationautomap

Spatial Overlay for Kriging Predictions in R


I have data that are structured as follows:

winter.dat<-structure(list(ELON = c(-98.02325, -96.66909, -99.33808, -98.70974, 
-98.29216, -97.08568, -99.90308, -100.53012, -99.05847, -95.86621, 
-97.25452, -102.49713, -96.63121, -97.69394, -96.35404, -94.6244, 
-99.64101, -96.81046, -97.26918, -99.27059, -97.0033, -99.34652, 
-97.28585, -96.33309, -96.80407, -98.36274, -99.7279, -97.91446, 
-95.32596, -95.2487, -95.64617, -94.84896, -95.88553, -96.32027, 
-98.03654, -99.80344, -95.65707, -98.49766, -96.71779, -96.42777, 
-99.14234, -98.46607, -101.6013, -98.743583, -97.47978, -95.64047, 
-96.0024, -98.48151, -99.05283, -96.35595, -99.83331, -101.22547, 
-95.54011, -94.8803, -95.45067, -94.78287, -102.8782, -97.76484, 
-97.95442, -98.11139, -95.99716, -96.94394, -99.42398, -97.21271, 
-99.01109, -95.78096, -97.74577, -98.56936, -94.84437, -97.95553, 
-97.60685, -94.82275, -96.91035, -97.20142, -97.95202, -95.60795, 
-97.46488, -96.49749, -97.46414, -97.5107, -97.58245, -96.26265, 
-95.91473, -97.22924, -96.76986, -97.04831, -95.55976, -95.27138, 
-98.96038, -97.15306, -99.36001, -97.58812, -94.79805, -99.0403, 
-96.94822, -96.03706, -100.26192, -97.34146, -95.18116, -97.09527, 
-96.06982, -96.95048, -94.98671, -95.01152, -99.13755, -96.67895, 
-95.22094, -97.52109, -98.52615, -97.98815, -98.77509, -95.1233, 
-94.64496, -95.34805, -94.68778, -99.41682, -96.34222), NLAT = c(34.80833, 
34.79851, 34.58722, 36.70823, 34.91418, 34.19258, 36.07204, 36.80253, 
35.40185, 35.96305, 36.75443, 36.69256, 35.17156, 36.41201, 35.7805, 
34.0433, 36.83129, 36.63459, 33.89376, 35.5915, 34.8497, 36.02866, 
36.1473, 34.60896, 35.65282, 36.74813, 35.54615, 35.03236, 34.65657, 
34.22321, 36.32112, 35.68001, 36.90987, 33.92075, 35.54848, 35.20494, 
35.30324, 36.26353, 34.55205, 36.84053, 36.72562, 35.14887, 36.60183, 
34.239444, 35.84891, 35.74798, 35.84162, 35.48439, 34.98971, 
35.07073, 34.6855, 36.85518, 34.03084, 33.83013, 36.14246, 36.4821, 
36.82937, 34.52887, 35.85431, 36.38435, 34.30876, 34.03579, 34.83592, 
36.06434, 36.98707, 34.88231, 36.79242, 34.72921, 36.88832, 35.27225, 
36.11685, 34.31072, 36.8981, 34.2281, 34.96774, 36.74374, 35.23611, 
36.03126, 35.47226, 35.5556, 35.47112, 35.43172, 35.58211, 34.7155, 
36.36114, 35.99865, 35.8257, 36.36914, 35.89904, 36.3559, 35.12275, 
34.19365, 35.43815, 36.19033, 35.36492, 36.4153, 36.59749, 35.54208, 
35.26527, 36.12093, 34.87642, 34.5661, 35.97235, 34.7107, 34.43972, 
34.33262, 36.77536, 34.98224, 35.84185, 34.16775, 35.5083, 35.489, 
36.011, 34.90092, 34.98426, 36.42329, 36.51806), RAIN_WINTER14 = c(0.7, 
1.8, 1.63, 1.14, 1.43, 4.2, 0.76, 1.42, 0.65, 2.42, 0.95, 0.24, 
2.82, 1.33, 1.37, 7.5, 1.22, 1.65, 4.3, 0.54, 2.99, 0.78, 1.17, 
5.57, 1.85, 0.99, 0.42, 0.69, 5, 4.23, 1.17, 5.82, 1.28, 4.42, 
1.22, 0.58, 4.28, 0.85, 2.12, 1.72, 1.41, 0.93, 0.47, 2.28, 1.43, 
3.86, 2.69, 1.17, 1.17, 1.6, 1.12, 0.85, 5.27, 7.11, 1.96, 3.12, 
0.25, 1.52, 1.19, 1.07, 3.53, 4.95, 0.87, 1.32, 1.26, 4.53, 0.97, 
0.47, 2.35, 1.56, 1.22, 7.55, 1.23, 2.98, 0.53, 1.41, 0.61, 1.74, 
1.46, 1.62, 1.71, 2.18, 2.43, 1.72, 1.05, 1.39, 2.52, 1.26, 0.61, 
1.4, 1.01, 2.13, 4.95, 0.9, 1.34, 1.69, 1.29, 1.56, 4.4, 1.13, 
4.82, 2.44, 5.29, 5.68, 1.69, 5.38, 2, 2.54, 1.17, 2.21, 0.67, 
4.38, 5.86, 3.79, 6.14, 1.05, 1.03)), .Names = c("ELON", "NLAT", 
"RAIN_WINTER14"), row.names = c(NA, -117L), class = "data.frame")

sensor_points<-structure(list(LON = c(-95.91, -97.51, -98.42, -97.51, -97.34, 
-97.86, -95.95, -96.09, -96.43, -96.26, -97.11, -98.61, -95.61, 
-95.91, -95.91, -94.45, -94.6, -97.51, -95.78, -96.46, -99.5, 
-95.78, -98.42, -95.91, -95.94, -94.97, -95.38, -97.86, -97.37, 
-97.51, -94.6, -97.51, -97.47, -97.34, -95.78, -97.06, -95.91, 
-97.59, -95.66, -97.76, -96.51, -94.66, -99.5, -95.49, -97.22, 
-98.24, -95.52, -95.38, -95.26, -96.14), LAT = c(36.12, 35.46, 
34.6, 35.46, 35.22, 36.4, 35.63, 35.99, 33.93, 34.13, 34.19, 
34.62, 36.31, 36.12, 36.12, 35.33, 35.4, 35.46, 36.03, 36.29, 
34.87, 36.03, 34.6, 36.12, 36.73, 35.91, 35.95, 36.4, 35.01, 
35.46, 34.89, 35.46, 35.65, 35.22, 36.03, 36.72, 36.12, 35.24, 
35.96, 35.51, 34, 35.13, 34.87, 36.28, 34.72, 35.06, 35.47, 35.95, 
36.43, 34.01)), .Names = c("LON", "LAT"), row.names = c(NA, 50L
), class = "data.frame")

I am using the autoKrige() function from the automap package in R to generate interpolated values for a grid that I have defined using the following code:

ok_state<-map("state","ok",plot=F) 
sp1<-seq(min(ok_state$x,na.rm=T),max(ok_state$x,na.rm=T),length=100) 
sp2<-seq(min(ok_state$y,na.rm=T),max(ok_state$y,na.rm=T),length=100) 
sp<-expand.grid(sp1,sp2)
S<-SpatialPoints(sp)
gridded(S)<-TRUE
proj4string(S)<-"+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs"
S<-spTransform(S,CRS("+proj=merc +zone=18s +ellps=WGS84 +datum=WGS84"))

To interpolate, I am using the following code:

coordinates(winter.dat)=~ELON+NLAT
proj4string(winter.dat)="+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs"
project_winter.dat=spTransform(winter.dat, CRS("+proj=merc +zone=18s +ellps=WGS84 +datum=WGS84"))
kr.grid<-autoKrige(RAIN_WINTER14~1,project_winter.dat,S)

That code seems to work. Now, I would like to extract predictions from specified cells of the interpolated grid using the over() function in the sp package. I tried to accomplish this using this code:

coordinates(sensor_points)=~LON+LAT
proj4string(sensor_points)="+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs"
project_sensor_points=spTransform(sensor_points, CRS("+proj=merc +zone=18s +ellps=WGS84 +datum=WGS84"))
proj4string(kr.grid$krige_output)==proj4string(project_sensor_points)
over(project_sensor_points,kr.grid$krige_output)

But this code yielded a matrix full of NA values. This may have happened because kr.grid$krige_output is a SpatialPointsDataFrame rather than a SpatialPixelsDataFrame or SpatialGridDataFrame.

Does anyone have any suggestions about how to address this problem? It could be as easy as converting kr.grid$krige_output to a SpatialPixelsDataFrame or a SpatialGridDataFrame. Unfortunately, I can't figure out how to do that.


Solution

  • By creating the sequences of x and y coordinates in geometric coordinates and subsequently projecting, your grid is no longer evenly spaced. Try projecting the ok_state extent first, and then create the sequence of evenly-spaced points in the new CRS.

    library(maps)
    library(sp)
    library(rgdal)
    library(automap)
    
    merc18s <- CRS("+proj=merc +zone=18s +ellps=WGS84 +datum=WGS84")
    wgs84 <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs")
    
    ok_state <- map("state", "ok", plot=F) 
    e <- data.frame(x=range(ok_state$x, na.rm=TRUE),
                    y=range(ok_state$y, na.rm=TRUE))
    coordinates(e) <- ~x+y
    proj4string(e)<- wgs84
    e.merc <- spTransform(e, merc18s)
    
    S <- SpatialPoints(expand.grid(seq(e.merc$x[1], e.merc$x[2], length=100),
                                    seq(e.merc$y[1], e.merc$y[2], length=100)))
    
    gridded(S) <- TRUE
    
    coordinates(winter.dat) <- ~ELON+NLAT
    proj4string(winter.dat) <- wgs84
    winter.dat.merc <- spTransform(winter.dat, merc18s)
    kr.grid <- autoKrige(RAIN_WINTER14~1, winter.dat.merc, S)
    
    
    coordinates(sensor_points) <- ~LON+LAT
    proj4string(sensor_points) <- wgs84
    sensor_points.merc <- spTransform(sensor_points, merc18s)
    
    over(sensor_points.merc, kr.grid$krige_output)
    

    This yields:

       var1.pred  var1.var var1.stdev
    1  1.8893073 0.3804578  0.6168126
    2  1.4171934 0.3588603  0.5990495
    3  1.2733813 0.4004269  0.6327930
    4  1.4171934 0.3588603  0.5990495
    5  1.4940596 0.3722470  0.6101204
    6  1.1237834 0.3879326  0.6228424
    7  2.7571025 0.3726498  0.6104505
    8  1.9355300 0.3784474  0.6151808
    9  4.7656947 0.4286066  0.6546806
    10 4.5619002 0.4072064  0.6381272
    11 3.6205513 0.3698636  0.6081641
    12 1.2280841 0.3974779  0.6304585
    13 1.7566100 0.3780431  0.6148521
    14 1.8893073 0.3804578  0.6168126
    15 1.8893073 0.3804578  0.6168126
    16 6.2926628 0.5055258  0.7110034
    17 5.8679727 0.4378686  0.6617164
    18 1.4171934 0.3588603  0.5990495
    19 2.2931583 0.3732854  0.6109708
    20 1.3982178 0.3871845  0.6222415
    21 1.0272094 0.3830222  0.6188879
    22 2.2931583 0.3732854  0.6109708
    23 1.2733813 0.4004269  0.6327930
    24 1.8893073 0.3804578  0.6168126
    25 1.3115832 0.3948189  0.6283462
    26 4.4892552 0.3843763  0.6199809
    27 3.1293649 0.3792566  0.6158381
    28 1.1237834 0.3879326  0.6228424
    29 1.6571943 0.3777782  0.6146366
    30 1.4171934 0.3588603  0.5990495
    31 6.3472936 0.4459952  0.6678287
    32 1.4171934 0.3588603  0.5990495
    33 1.4031739 0.3635883  0.6029828
    34 1.4940596 0.3722470  0.6101204
    35 2.2931583 0.3732854  0.6109708
    36 1.2112401 0.3877834  0.6227226
    37 1.8893073 0.3804578  0.6168126
    38 1.3631983 0.3672577  0.6060179
    39 2.5845513 0.3715311  0.6095335
    40 1.3130873 0.3674918  0.6062111
    41 4.6494661 0.4154409  0.6445470
    42 5.8924573 0.4228850  0.6502961
    43 1.0272094 0.3830222  0.6188879
    44 2.0579067 0.3776652  0.6145447
    45 2.1571974 0.3750187  0.6123877
    46 0.9718268 0.3733108  0.6109916
    47 3.8462812 0.3836691  0.6194103
    48 3.1293649 0.3792566  0.6158381
    49 2.3244060 0.3853137  0.6207364
    50 4.7678701 0.4246547  0.6516554