More simply put than the below: if one has one or multiple query parameters, e.g. x_id
, (or report / table function parameters) that are performance crucial (e.g. some primary key index can be used) and it may be (depending on the use case/report filters applied, ...) one of
null
then if all these possibilities are coded in a single query, I only see and know that the optimizer will
x_id
although it may be e.g. some exact matchAre there ather ways to handle this than to
n
predefined and use case optimized queries/views?
Basically I have two slightly different use cases/questions as documented and executable below:
A - select * from tf_sel
B - select * from data_union
which could potentially be solved via SQL hints or using some other trick.
To speed these queries up I am currently separating the "merged queries" on a certain implementation level (table function) which is quite cumbersome and harder to maintain, but assures the queries are running quite fast due their better execution plan.
As I see it, the main problem seems the static nature of the optimizer sql plan that is always the same altough it could be much more efficient, if it would consider some "query-time-constant" filter parameters.
with
-- Question A: What would be a good strategy to make tf_sel with tf_params nearly as fast as query_use_case_1_eq
-- which actually provides the same result?
--
-- - a complex query should be used in various reports with filters
-- - we want to keep as much as possible filter functionality on the db side (not the report engine side)
-- to be able to utilize the fast and efficient db engine and for loosely coupled software design
complex_query as ( -- just some imaginable complex query with a lot of table/view joins, aggregation/analytical functions etc.
select 1 as id, 'ab12' as indexed_val, 'asdfasdf' x from dual
union all select 2, 'ab34', 'a uiop345' from dual
union all select 3, 'xy34', 'asdf 0u0duaf' from dual
union all select 4, 'xy55', ' asdja´sf asd' from dual
)
-- <<< comment the following lines in to test it with the above
-- , query_use_case_1_eq as ( -- quite fast and maybe the 95% use case
-- select * from complex_query where indexed_val = 'ab12'
-- )
--select * from query_use_case_1_eq
-- >>>
-- ID INDEXED_VAL X
-- -- ----------- --------
-- 1 ab12 asdfasdf
-- <<< comment the following lines in to test it with the above
-- , query_use_case_2_all as ( -- significantly slower due to a lot of underlying calculations
-- select * from complex_query
-- )
--select * from query_use_case_2_all
-- >>>
-- ID INDEXED_VAL X
-- -- ----------- -------------
-- 1 ab12 asdfasdf
-- 2 ab34 a uiop345
-- 3 xy34 asdf 0u0duaf
-- 4 xy55 asdja´sf asd
-- <<< comment the following lines in to test it with the above
-- , query_use_case_3_like as (
-- select * from complex_query where indexed_val like 'ab%'
-- )
--select * from query_use_case_3_like
-- >>>
-- ID INDEXED_VAL X
-- -- ----------- ---------
-- 1 ab12 asdfasdf
-- 2 ab34 a uiop345
-- <<< comment the following lines to simulate the table function
, tf_params as ( -- table function params: imagine we have a table function where these are passed depending on the report
select 'ab12' p_indexed_val, 'eq' p_filter_type from dual
)
, tf_sel as ( -- table function select: nicely integrating all query possiblities, but beeing veeery slow :-(
select q.*
from
tf_params p -- just here so this example works without the need for the actual function
join complex_query q on (1=1)
where
p_filter_type = 'all'
or (p_filter_type = 'eq' and indexed_val = p_indexed_val)
or (p_filter_type = 'like' and indexed_val like p_indexed_val)
or (p_filter_type = 'regexp' and regexp_like(indexed_val, p_indexed_val))
)
-- actually we would pass the tf_params above if it were a real table function
select * from tf_sel
-- >>>
-- ID INDEXED_VAL X
-- -- ----------- --------
-- 1 ab12 asdfasdf
-- Question B: How can we speed up data_union with dg_filter to be as fast as the data_group1 query which
-- actually provides the same result?
--
-- A very similar approach is considered in other scenarios where we like to join the results of
-- different queries (>5) returning joinable data and beeing filtered based on the same parameters.
-- <<< comment the following lines to simulate the union problem
-- , data_group1 as ( -- may run quite fast
-- select 'dg1' dg_id, q.* from complex_query q where x < 'a' -- just an example returning some special rows that should be filtered later on!
-- )
--
-- , data_group2 as ( -- may run quite fast
-- select 'dg2' dg_id, q.* from complex_query q where instr(x,'p') >= 0 -- just an example returning some special rows that should be filtered later on!
-- )
--
--
-- , dg_filter as ( -- may be set by a report or indirectly by user filters
-- select 'dg1' dg_id from dual
-- )
--
-- , data_union as ( -- runs much slower due to another execution plan
-- select * from (
-- select * from data_group1
-- union all select * from data_group2
-- )
-- where dg_id in (select dg_id from dg_filter)
-- )
--
--select * from data_union
-- >>>
-- DG_ID ID INDEXED_VAL X
-- ----- -- ----------- -------------
-- dg1 4 xy55 asdja´sf asd
Actually your answer was a mix up of my (unrelated although occuring together in certain scenarios) use cases A and B. Although it's nevertheless essential that you mentioned the optimizer has dynamic FILTER
and maybe other capabilities.
Actually use case B (based on your sample table) looks more like this, but I still have to check for the performance issue in the real scenario. Maybe you can see some problems with it already?
select * from (
select 'dg1' data_group, x.* from sample_table x
where mod(to_number(some_other_column1), 100000) = 0 -- just some example restriction
--and indexed_val = '3635' -- commenting this in and executing this standalone returns:
----------------------------------------------------------------------------------------
--| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
----------------------------------------------------------------------------------------
--| 0 | SELECT STATEMENT | | 1 | 23 | 2 (0)|
--| 1 | TABLE ACCESS BY INDEX ROWID| SAMPLE_TABLE | 1 | 23 | 2 (0)|
--| 2 | INDEX RANGE SCAN | SAMPLE_TABLE_IDX1 | 1 | | 1 (0)|
----------------------------------------------------------------------------------------
union all
select 'dg2', x.* from sample_table x
where mod(to_number(some_other_column2), 9999) = 0 -- just some example restriction
union all
select 'dg3', x.* from sample_table x
where mod(to_number(some_other_column3), 3635) = 0 -- just some example restriction
)
where data_group in ('dg1') and indexed_val = '35'
-------------------------------------------------------------------------------------------
--| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
-------------------------------------------------------------------------------------------
--| 0 | SELECT STATEMENT | | 3 | 639 | 2 (0)|
--| 1 | VIEW | | 3 | 639 | 2 (0)|
--| 2 | UNION-ALL | | | | |
--| 3 | TABLE ACCESS BY INDEX ROWID | SAMPLE_TABLE | 1 | 23 | 2 (0)|
--| 4 | INDEX RANGE SCAN | SAMPLE_TABLE_IDX1 | 1 | | 1 (0)|
--| 5 | FILTER | | | | |
--| 6 | TABLE ACCESS BY INDEX ROWID| SAMPLE_TABLE | 1 | 23 | 2 (0)|
--| 7 | INDEX RANGE SCAN | SAMPLE_TABLE_IDX1 | 1 | | 1 (0)|
--| 8 | FILTER | | | | |
--| 9 | TABLE ACCESS BY INDEX ROWID| SAMPLE_TABLE | 1 | 23 | 2 (0)|
--| 10 | INDEX RANGE SCAN | SAMPLE_TABLE_IDX1 | 1 | | 1 (0)|
-------------------------------------------------------------------------------------------
Based on your sample table this is more like what I wanna do.
As you can see the query with just the fast where p.ft_id = 'eq' and x.indexed_val = p.val
shows the index usage, but having all the different filter options in the where
clause will cause the plan switch to always use a full table scan :-/
(Even if I use the :p_filter_type
and :p_indexed_val_filter
everywhere in the SQL than just in the one spot I put it, it won't change.)
with
filter_type as (
select 'all' as id from dual
union all select 'eq' as id from dual
union all select 'like' as id from dual
union all select 'regexp' as id from dual
)
, params as (
select
(select * from filter_type where id = :p_filter_type) as ft_id,
:p_indexed_val_filter as val
from dual
)
select *
from params p
join sample_table x on (1=1)
-- the following with the above would show the 'eq' use case with a fast index scan (plan id 14/15)
--where p.ft_id = 'eq' and x.indexed_val = p.val
------------------------------------------------------------------------------------------
--| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
------------------------------------------------------------------------------------------
--| 0 | SELECT STATEMENT | | 1 | 23 | 12 (0)|
--| 1 | VIEW | | 4 | 20 | 8 (0)|
--| 2 | UNION-ALL | | | | |
--| 3 | FILTER | | | | |
--| 4 | FAST DUAL | | 1 | | 2 (0)|
--| 5 | FILTER | | | | |
--| 6 | FAST DUAL | | 1 | | 2 (0)|
--| 7 | FILTER | | | | |
--| 8 | FAST DUAL | | 1 | | 2 (0)|
--| 9 | FILTER | | | | |
--| 10 | FAST DUAL | | 1 | | 2 (0)|
--| 11 | FILTER | | | | |
--| 12 | NESTED LOOPS | | 1 | 23 | 4 (0)|
--| 13 | FAST DUAL | | 1 | | 2 (0)|
--| 14 | TABLE ACCESS BY INDEX ROWID| SAMPLE_TABLE | 1 | 23 | 2 (0)|
--| 15 | INDEX RANGE SCAN | SAMPLE_TABLE_IDX1 | 1 | | 1 (0)|
--| 16 | VIEW | | 4 | 20 | 8 (0)|
--| 17 | UNION-ALL | | | | |
--| 18 | FILTER | | | | |
--| 19 | FAST DUAL | | 1 | | 2 (0)|
--| 20 | FILTER | | | | |
--| 21 | FAST DUAL | | 1 | | 2 (0)|
--| 22 | FILTER | | | | |
--| 23 | FAST DUAL | | 1 | | 2 (0)|
--| 24 | FILTER | | | | |
--| 25 | FAST DUAL | | 1 | | 2 (0)|
------------------------------------------------------------------------------------------
where
--mod(to_number(some_other_column1), 3000) = 0 and -- just some example restriction
(
p.ft_id = 'all'
or
p.ft_id = 'eq' and x.indexed_val = p.val
or
p.ft_id = 'like' and x.indexed_val like p.val
or
p.ft_id = 'regexp' and regexp_like(x.indexed_val, p.val)
)
-- with the full flexibility of the filter the plan shows a full table scan (plan id 13) :-(
--------------------------------------------------------------------------
--| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
--------------------------------------------------------------------------
--| 0 | SELECT STATEMENT | | 1099 | 25277 | 115 (3)|
--| 1 | VIEW | | 4 | 20 | 8 (0)|
--| 2 | UNION-ALL | | | | |
--| 3 | FILTER | | | | |
--| 4 | FAST DUAL | | 1 | | 2 (0)|
--| 5 | FILTER | | | | |
--| 6 | FAST DUAL | | 1 | | 2 (0)|
--| 7 | FILTER | | | | |
--| 8 | FAST DUAL | | 1 | | 2 (0)|
--| 9 | FILTER | | | | |
--| 10 | FAST DUAL | | 1 | | 2 (0)|
--| 11 | NESTED LOOPS | | 1099 | 25277 | 115 (3)|
--| 12 | FAST DUAL | | 1 | | 2 (0)|
--| 13 | TABLE ACCESS FULL| SAMPLE_TABLE | 1099 | 25277 | 113 (3)|
--| 14 | VIEW | | 4 | 20 | 8 (0)|
--| 15 | UNION-ALL | | | | |
--| 16 | FILTER | | | | |
--| 17 | FAST DUAL | | 1 | | 2 (0)|
--| 18 | FILTER | | | | |
--| 19 | FAST DUAL | | 1 | | 2 (0)|
--| 20 | FILTER | | | | |
--| 21 | FAST DUAL | | 1 | | 2 (0)|
--| 22 | FILTER | | | | |
--| 23 | FAST DUAL | | 1 | | 2 (0)|
--------------------------------------------------------------------------
(more for situation A) but also applicable to B) in this way ...)
I am now using some hybrid approach (combination of the 1. and 2. points in my question) and actually quite like it, because it also provides good debugging and encapsulation possibilities and the optimizer does not have to deal at all with finding the best strategy based on basically logically separated queries in a bigger query, e.g. on internal FILTER
rules, which may be good or at worst incredibly more inefficient:
using this in the report
select *
from table(my_report_data_func_sql(
:val1,
:val1_filter_type,
:val2
))
where the table function is defined like this
create or replace function my_report_data_func_sql(
p_val1 integer default 1234,
p_val1_filter_type varchar2 default 'eq',
p_val2 varchar2 default null
) return varchar2 is
query varchar2(4000) := '
with params as ( -- *: default param
select
''||p_val1||'' p_val1, -- eq*
'''||p_val1_filter_type||''' p_val1_filter_type, -- [eq, all*, like, regexp]
'''||p_val2||''' p_val2 -- null*
from dual
)
select x.*
from
params p -- workaround for standalone-sql-debugging using "with" statement above
join my_report_data_base_view x on (1=1)
where 1=1 -- ease of filter expression adding below
'
-- #### FILTER CRITERIAS are appended here ####
-- val1-filter
||case p_val1_filter_type
when 'eq' then '
and val1 = p_val1
' when 'like' then '
and val1 like p_val1
' when 'regexp' then '
and regexp_like(val1, p_val1)
' else '' end -- all
;
begin
return query;
end;
;
and would produce the following by example:
select *
from table(my_report_data_func_sql(
1234,
'eq',
'someval2'
))
/*
with params as ( -- *: default param
select
1 p_val1, -- eq*
'eq' p_val1_filter_type, -- [eq, all*, like, regexp]
'someval2' p_val2 -- null*
from dual
)
select x.*
from
params p -- workaround for standalone-sql-debugging using "with" statement above
join my_report_data_base_view x on (1=1)
where 1=1 -- ease of filter expression adding below
and val1 = p_val1
*/