cudabatch-processingcufft

Batched FFTs using cufftPlanMany


I want to perform 441 2D, 32-by-32 FFTs using the batched method provided by the cuFFT library. The parameters of the transform are the following:

int n[2] = {32,32};
int inembed[] = {32,32};
int onembed[] = {32,32/2+1};

cufftPlanMany(&plan,2,n,inembed,1,32*32,onembed,1,32*(32/2+1),CUFFT_D2Z,441);
cufftPlanMany(&inverse_plan,2,n,onembed,1,32*32,inembed,1,32*32,CUFFT_Z2D,441);

After I did the forward and inverse FFTs using the above plans, I could not get the original data back.

Can anyone advise me how to set the parameters correctly for cudaPlanMany? Many thanks in advance.

By the way, is it the best way to use cudaPlanMany for my situation?


Solution

  • Here is a full example on how using cufftPlanMany to perform batched direct and inverse transformations in CUDA. The example refers to float to cufftComplex transformations and back. The final result of the direct+inverse transformation is correct but for a multiplicative constant equal to the overall number of matrix elements nRows*nCols.

    #include <stdio.h>
    #include <stdlib.h>
    #include <cufft.h>
    #include <assert.h>
    
    /********************/
    /* CUDA ERROR CHECK */
    /********************/
    #define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
    inline void gpuAssert(cudaError_t code, char *file, int line, bool abort=true)
    {
        if (code != cudaSuccess) 
        {
            fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
            if (abort) { getchar(); exit(code); }
        }
    }
    
    /*********************/
    /* CUFFT ERROR CHECK */
    /*********************/
    static const char *_cudaGetErrorEnum(cufftResult error)
    {
        switch (error)
        {
            case CUFFT_SUCCESS:
                return "CUFFT_SUCCESS";
    
            case CUFFT_INVALID_PLAN:
                return "CUFFT_INVALID_PLAN";
    
            case CUFFT_ALLOC_FAILED:
                return "CUFFT_ALLOC_FAILED";
    
            case CUFFT_INVALID_TYPE:
                return "CUFFT_INVALID_TYPE";
    
            case CUFFT_INVALID_VALUE:
                return "CUFFT_INVALID_VALUE";
    
            case CUFFT_INTERNAL_ERROR:
                return "CUFFT_INTERNAL_ERROR";
    
            case CUFFT_EXEC_FAILED:
                return "CUFFT_EXEC_FAILED";
    
            case CUFFT_SETUP_FAILED:
                return "CUFFT_SETUP_FAILED";
    
            case CUFFT_INVALID_SIZE:
                return "CUFFT_INVALID_SIZE";
    
            case CUFFT_UNALIGNED_DATA:
                return "CUFFT_UNALIGNED_DATA";
        }
    
        return "<unknown>";
    }
    
    #define cufftSafeCall(err)      __cufftSafeCall(err, __FILE__, __LINE__)
    inline void __cufftSafeCall(cufftResult err, const char *file, const int line)
    {
        if( CUFFT_SUCCESS != err) {
                    fprintf(stderr, "CUFFT error in file '%s', line %d\n %s\nerror %d: %s\nterminating!\n",__FILE__, __LINE__,err, \
                               _cudaGetErrorEnum(err)); \
                 cudaDeviceReset(); assert(0); \
        }
    }
    
    /********/
    /* MAIN */
    /********/
    void main() {
    
        cufftHandle forward_plan, inverse_plan; 
    
        int batch = 3;
        int rank = 2;
    
        int nRows = 5;
        int nCols = 5;
        int n[2] = {nRows, nCols};
    
        int idist = nRows*nCols;
        int odist = nRows*(nCols/2+1);
    
        int inembed[] = {nRows, nCols};
        int onembed[] = {nRows, nCols/2+1};
    
        int istride = 1;
        int ostride = 1;
    
        cufftSafeCall(cufftPlanMany(&forward_plan,  rank, n, inembed, istride, idist, onembed, ostride, odist, CUFFT_R2C, batch));
    
        float *h_in = (float*)malloc(sizeof(float)*nRows*nCols*batch);
        for(int i=0; i<nRows*nCols*batch; i++) h_in[i] = 1.f;
    
        float2* h_freq = (float2*)malloc(sizeof(float2)*nRows*(nCols/2+1)*batch);
    
        float* d_in;            
        gpuErrchk(cudaMalloc(&d_in, sizeof(float)*nRows*nCols*batch)); 
    
        float2* d_freq; 
        gpuErrchk(cudaMalloc(&d_freq, sizeof(float2)*nRows*(nCols/2+1)*batch)); 
    
        gpuErrchk(cudaMemcpy(d_in,h_in,sizeof(float)*nRows*nCols*batch,cudaMemcpyHostToDevice));
    
        cufftSafeCall(cufftExecR2C(forward_plan, d_in, d_freq));
    
        gpuErrchk(cudaMemcpy(h_freq,d_freq,sizeof(float2)*nRows*(nCols/2+1)*batch,cudaMemcpyDeviceToHost));
    
        for(int i=0; i<nRows*(nCols/2+1)*batch; i++) printf("Direct transform: %i %f %f\n",i,h_freq[i].x,h_freq[i].y); 
    
        cufftSafeCall(cufftPlanMany(&inverse_plan, rank, n, onembed, ostride, odist, inembed, istride, idist, CUFFT_C2R, batch));
    
        cufftSafeCall(cufftExecC2R(inverse_plan, d_freq, d_in));
    
        gpuErrchk(cudaMemcpy(h_in,d_in,sizeof(float)*nRows*nCols*batch,cudaMemcpyDeviceToHost));
    
        for(int i=0; i<nRows*nCols*batch; i++) printf("Inverse transform: %i %f \n",i,h_in[i]); 
    
        getchar();
    
    }