I have a 3D array of booleans that represents some 3D terrain. Currently i can draw it by drawing a point at the position specified by its x y and z in the array, it looks like this.
What i can't figure out is how i would draw this using triangles, so it looks like actual terrain. I don't want to draw each on as a cube either.
Are there any algorithms to obtain which points to draw to (bear in mind that for the sake of efficiency only points on the exterior of a landmass should be drawn)?
Absolutely amazing question! I couldn't resist but to play with boxes, since boxes are sexy. It is actually fairly easy to produce boxes with the hidden faces omitted.
The following algorithm takes a list of 3D positions of true
in your grid, which is easy to obtain by simply scanning through the grid and filling an array. Also with this data format you can store much larger grid, provided that the terrain is reasonably sparse. Up front, apologies for my spartan for-each loops, I just wanted to have the code in-place and avoid writing dozens of function objects or using lambdas. Also apologies for using C++ instead of Java, don't have javac at home and I'm not really good with it anyway. Here goes:
#include <vector>
#include <map>
#include <set>
#include <utility>
#include <assert.h>
#include <math.h>
struct Pos3 {
int x, y, z;
Pos3(int _x = 0, int _y = 0, int _z = 0);
bool operator <(const Pos3 &other) const;
};
std::vector<int> index_buffer;
std::vector<float> vertex_buffer;
void onInitialize()
{
const int N = 32;
std::vector<Pos3> points;
GeneratePoints(points, N);
// input: bunch of points in NxNxN box (easy to get from a boolean array,
// can have much larger terrains if stored like this)
std::set<Pos3> point_set;
point_set.insert(points.begin(), points.end());
// put all the points to a set to be able to lookup neighbors (not needed with an array)
std::vector<std::vector<int> > polygons;
polygons.reserve(3 * points.size()); // guess
std::map<Pos3, int> vertex_map;
for(size_t i = 0, n = points.size(); i < n; ++ i) {
Pos3 p = points[i], corners[8] = {
p, Pos3(p.x + 1, p.y, p.z), Pos3(p.x + 1, p.y + 1, p.z), Pos3(p.x, p.y + 1, p.z),
Pos3(p.x, p.y, p.z + 1), Pos3(p.x + 1, p.y, p.z + 1), Pos3(p.x + 1, p.y + 1, p.z + 1),
Pos3(p.x, p.y + 1, p.z + 1)
};
// get corners of a cube
static const int sides[][3 + 4] = {
0, -1, 0, 4, 5, 1, 0, 1, 0, 0, 5, 6, 2, 1,
0, 1, 0, 6, 7, 3, 2, -1, 0, 0, 7, 4, 0, 3,
0, 0, -1, 0, 1, 2, 3, 0, 0, 1, 7, 6, 5, 4
};
// directions and side quad indices
for(int j = 0; j < 6; ++ j) {
Pos3 n(p.x + sides[j][0], p.y + sides[j][1], p.z + sides[j][2]); // position of a neighbor
if(point_set.find(n) != point_set.end())
continue; // have a neighbor, will not triangulate this side
polygons.resize(polygons.size() + 1);
std::vector<int> &poly = polygons.back(); // or use emplace_back() in c++11
poly.resize(4); // form quads
for(int v = 0; v < 4; ++ v) {
Pos3 vert = corners[sides[j][3 + v]];
std::map<Pos3, int>::iterator it; // use map to reuse vertices
if((it = vertex_map.find(vert)) == vertex_map.end())
vertex_map[vert] = poly[v] = vertex_map.size(); // new vertex
else
poly[v] = (*it).second; // existing vertex
}
}
// generate sides, skip invisible sides
// note that this still triangulates cavities, would have to flood-fill
// outside area and then set all that is not outside to opaque (did not
// solve that as this is also a valid behavior)
}
vertex_buffer.resize(vertex_map.size() * 3);
for(std::map<Pos3, int>::const_iterator it = vertex_map.begin(), e = vertex_map.end(); it != e; ++ it) {
size_t i = (*it).second * 3;
vertex_buffer[i + 0] = ((*it).first.x + .5f) / (N + 1) * 2 - 1;
vertex_buffer[i + 1] = ((*it).first.y + .5f) / (N + 1) * 2 - 1;
vertex_buffer[i + 2] = ((*it).first.z + .5f) / (N + 1) * 2 - 1;
}
// convert points from the discrete domain
// to a unit 3D cube centered around the origin
index_buffer.reserve(polygons.size() * 2 * 3); // approximate number of triangles
for(size_t i = 0, n = polygons.size(); i < n; ++ i) {
const std::vector<int> &poly = polygons[i];
for(size_t j = 2, n = poly.size(); j < n; ++ j) {
index_buffer.push_back(poly[0]);
index_buffer.push_back(poly[j]);
index_buffer.push_back(poly[j - 1]);
}
}
// convert polygons (those are actually quads) to triangles
}
There is also some more code that generates normals (ommited for the sake of clarity), the output looks like this:
The shape is a Julia set generated on a discrete lattice, you might recognize the shape when you turn it arround.
This is actually pretty similar to what you would get by the Delaunay triangulation if you could easily remove your interior points. The generated shape is hollow. There can be some "bubbles" in the shape, in case the booleans also contain a bubble (does not occur with Julia). This is easily fixed by flood-filling the booleans in order to fill those up.
Next, we can apply Catmull-Clark subdivision in order to get a smoother mesh:
typedef std::map<std::pair<int, int>, std::pair<size_t, int> > EdgeMap;
static bool Get_EdgeID(size_t &eid, int a, int b, EdgeMap &edges)
{
std::pair<int, int> e(std::min(a, b), std::max(a, b));
EdgeMap::iterator it = edges.find(e);
if(it == edges.end()) {
edges[e] = std::make_pair(eid = edges.size(), 1); // id, count
return true; // new edge
} else {
eid = (*it).second.first; // get id
++ (*it).second.second; // increase count
return false; // no new edge
}
}
void CatClark(std::vector<std::vector<int> > &src_quads, std::vector<float> &src_verts)
{
const static float vpw[4] = {9.0f, 3.0f, 1.0f, 3.0f};
const static float epw[4] = {3.0f, 3.0f, 1.0f, 1.0f};
std::vector<std::vector<int> > dst_quads(src_quads.size() * 4, std::vector<int>(4)); // will produce quads
std::vector<float> dst_verts(src_verts.size() + src_quads.size() * 3, 0); // alloc s¨pace for vertices
EdgeMap edges;
std::vector<int> face_valences(src_verts.size() / 3, 0);
const size_t off_vp = src_quads.size(), off_ep = off_vp + src_verts.size() / 3;
for(size_t j = 0; j < off_vp; ++ j) {
assert(src_quads[j].size() == 4); // otherwise won't work
size_t eid[4];
for(int k = 0; k < 4; ++ k) {
int quad[4];
for(int i = 0; i < 4; ++ i)
quad[i] = src_quads[j][(i + k) & 3]; // get the 4 vertices (but rotate them each k iteration)
if(Get_EdgeID(eid[k], quad[0], quad[1], edges)) // create edges
dst_verts.insert(dst_verts.end(), 3, .0f); // must add new vertex to accomodate subdivided edge point
++ face_valences[quad[0]]; // update face-valence
for(int n = 0; n < 3; ++ n)
dst_verts[j * 3 + n] += 0.25f * src_verts[quad[0] * 3 + n]; // increment face point
for(int i = 0; i < 4; ++ i) {
for(int n = 0; n < 3; ++ n) {
dst_verts[(off_vp + quad[0]) * 3 + n] += vpw[i] * src_verts[quad[i] * 3 + n]; // incremente vertex point
dst_verts[(off_ep + eid[k]) * 3 + n] += epw[i] * src_verts[quad[i] * 3 + n]; // increment edge point
}
}
}
for(int k = 0; k < 4; ++ k) { // make child faces
dst_quads[4 * j + k][0] = j;
dst_quads[4 * j + k][4] = off_ep + eid[(3 + k) & 3];
dst_quads[4 * j + k][5] = off_ep + eid[(0 + k) & 3];
dst_quads[4 * j + k][6] = off_vp + src_quads[j][k];
}
}
for(size_t j = 0, n = src_verts.size() / 3; j < n; ++ j) {
for(int n = 0; n < 3; ++ n)
dst_verts[(off_vp + j) * 3 + n] *= 0.0625f / float(face_valences[j]);
}
for(EdgeMap::const_iterator it = edges.begin(), e = edges.end(); it != e; ++ it) {
size_t j = (*it).second.first;
float rvalence = 0.1250f / float((*it).second.second);
for(int n = 0; n < 3; ++ n)
dst_verts[(off_ep + j) * 3 + n] *= rvalence;
}
dst_quads.swap(src_quads);
dst_verts.swap(src_verts);
}
This algorithm was adapted to work with STL containers from Iñigo 'iq' Quilez / rgba, "Tricks and techniques for rgba's past and future intros", Breakpoint, 2007.
This gives output quite similar to what you would get with marching cubes / marching tetrahedrons / marching triangles, except that it is always higher resolution than that of the original lattice (with the above methods you can easily change the triangulation resolution). A slightly different view of the same data:
Or without wireframe:
The complete source code, along with Visual Studio workspace and win32 binaries can be found at here. It uses GLUT and the old fixed-function pipeline to display the generated geometry (only for simplicity and portability, otherwise I'd have to include GLEW or the like). I really enjoyed toying around with your question, I hope you will like the output ...