We have a table in MySql with arround 30 million records, the following is table structure
CREATE TABLE `campaign_logs` (
`domain` varchar(50) DEFAULT NULL,
`campaign_id` varchar(50) DEFAULT NULL,
`subscriber_id` varchar(50) DEFAULT NULL,
`message` varchar(21000) DEFAULT NULL,
`log_time` datetime DEFAULT NULL,
`log_type` varchar(50) DEFAULT NULL,
`level` varchar(50) DEFAULT NULL,
`campaign_name` varchar(500) DEFAULT NULL,
KEY `subscriber_id_index` (`subscriber_id`),
KEY `log_type_index` (`log_type`),
KEY `log_time_index` (`log_time`),
KEY `campid_domain_logtype_logtime_subid_index` (`campaign_id`,`domain`,`log_type`,`log_time`,`subscriber_id`),
KEY `domain_logtype_logtime_index` (`domain`,`log_type`,`log_time`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 |
Following is my query
I'm doing UNION ALL instead of using IN operation
SELECT log_type,
DATE_FORMAT(CONVERT_TZ(log_time,'+00:00','+05:30'),'%l %p') AS log_date,
count(DISTINCT subscriber_id) AS COUNT,
COUNT(subscriber_id) AS total
FROM stats.campaign_logs USE INDEX(campid_domain_logtype_logtime_subid_index)
WHERE DOMAIN='xxx'
AND campaign_id='123'
AND log_type = 'EMAIL_OPENED'
AND log_time BETWEEN CONVERT_TZ('2015-02-01 00:00:00','+00:00','+05:30') AND CONVERT_TZ('2015-03-01 23:59:58','+00:00','+05:30')
GROUP BY log_date
UNION ALL
SELECT log_type,
DATE_FORMAT(CONVERT_TZ(log_time,'+00:00','+05:30'),'%l %p') AS log_date,
COUNT(DISTINCT subscriber_id) AS COUNT,
COUNT(subscriber_id) AS total
FROM stats.campaign_logs USE INDEX(campid_domain_logtype_logtime_subid_index)
WHERE DOMAIN='xxx'
AND campaign_id='123'
AND log_type = 'EMAIL_SENT'
AND log_time BETWEEN CONVERT_TZ('2015-02-01 00:00:00','+00:00','+05:30') AND CONVERT_TZ('2015-03-01 23:59:58','+00:00','+05:30')
GROUP BY log_date
UNION ALL
SELECT log_type,
DATE_FORMAT(CONVERT_TZ(log_time,'+00:00','+05:30'),'%l %p') AS log_date,
COUNT(DISTINCT subscriber_id) AS COUNT,
COUNT(subscriber_id) AS total
FROM stats.campaign_logs USE INDEX(campid_domain_logtype_logtime_subid_index)
WHERE DOMAIN='xxx'
AND campaign_id='123'
AND log_type = 'EMAIL_CLICKED'
AND log_time BETWEEN CONVERT_TZ('2015-02-01 00:00:00','+00:00','+05:30') AND CONVERT_TZ('2015-03-01 23:59:58','+00:00','+05:30')
GROUP BY log_date,
Following is my Explain statement
+----+--------------+---------------+-------+-------------------------------------------+-------------------------------------------+---------+------+--------+------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+--------------+---------------+-------+-------------------------------------------+-------------------------------------------+---------+------+--------+------------------------------------------+
| 1 | PRIMARY | campaign_logs | range | campid_domain_logtype_logtime_subid_index | campid_domain_logtype_logtime_subid_index | 468 | NULL | 55074 | Using where; Using index; Using filesort |
| 2 | UNION | campaign_logs | range | campid_domain_logtype_logtime_subid_index | campid_domain_logtype_logtime_subid_index | 468 | NULL | 330578 | Using where; Using index; Using filesort |
| 3 | UNION | campaign_logs | range | campid_domain_logtype_logtime_subid_index | campid_domain_logtype_logtime_subid_index | 468 | NULL | 1589 | Using where; Using index; Using filesort |
| NULL | UNION RESULT | <union1,2,3> | ALL | NULL | NULL | NULL | NULL | NULL | |
+----+--------------+---------------+-------+-------------------------------------------+-------------------------------------------+---------+------+--------+------------------------------------------+
2.I removed COUNT(DISTINCT subscriber_id) from the query , then I got huge performance gain , I'm getting results in approx 1.5 sec, previously it was taking 50 sec - 1 minute. But I need distinct count of subscriber_id from the query
Following is explain when I remove COUNT(DISTINCT subscriber_id) from the query
+----+--------------+---------------+-------+-------------------------------------------+-------------------------------------------+---------+------+--------+-----------------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+--------------+---------------+-------+-------------------------------------------+-------------------------------------------+---------+------+--------+-----------------------------------------------------------+
| 1 | PRIMARY | campaign_logs | range | campid_domain_logtype_logtime_subid_index | campid_domain_logtype_logtime_subid_index | 468 | NULL | 55074 | Using where; Using index; Using temporary; Using filesort |
| 2 | UNION | campaign_logs | range | campid_domain_logtype_logtime_subid_index | campid_domain_logtype_logtime_subid_index | 468 | NULL | 330578 | Using where; Using index; Using temporary; Using filesort |
| 3 | UNION | campaign_logs | range | campid_domain_logtype_logtime_subid_index | campid_domain_logtype_logtime_subid_index | 468 | NULL | 1589 | Using where; Using index; Using temporary; Using filesort |
| NULL | UNION RESULT | <union1,2,3> | ALL | NULL | NULL | NULL | NULL | NULL | |
+----+--------------+---------------+-------+-------------------------------------------+-------------------------------------------+---------+------+--------+-----------------------------------------------------------+
I could solve my performance problem by leaving out COUNT(DISTINCT...)
but I need those values. Is there a way to refactor my query, or add an index, or something, to get the COUNT(DISTINCT...)
values, but much faster?
UPDATE the following information is about data distribution of above table
for 1 domain 1 campaign 20 log_types 1k-200k subscribers
The above query I'm running for , the domain having 180k+ subscribers.
If the query without the count(distinct)
is going much faster, perhaps you can do nested aggregation:
SELECT log_type, log_date,
count(*) AS COUNT, sum(cnt) AS total
FROM (SELECT log_type,
DATE_FORMAT(CONVERT_TZ(log_time,'+00:00','+05:30'),'%l %p') AS log_date,
subscriber_id, count(*) as cnt
FROM stats.campaign_logs USE INDEX(campid_domain_logtype_logtime_subid_index)
WHERE DOMAIN = 'xxx' AND
campaign_id = '123' AND
log_type IN ('EMAIL_SENT', 'EMAIL_OPENED', 'EMAIL_CLICKED') AND
log_time BETWEEN CONVERT_TZ('2015-02-01 00:00:00','+00:00','+05:30') AND
CONVERT_TZ('2015-03-01 23:59:58','+00:00','+05:30')
GROUP BY log_type, log_date, subscriber_id
) l
GROUP BY logtype, log_date;
With a bit of luck, this will take 2-3 seconds rather than 50. However, you might need to break this out into subqueries, to get full performance. So, if this does not have a significant performance gain, change the in
back to =
one of the types. If that works, then the union all
may be necessary.
EDIT:
Another attempt is to use variables to enumerate the values before the group by
:
SELECT log_type, log_date, count(*) as cnt,
SUM(rn = 1) as sub_cnt
FROM (SELECT log_type,
DATE_FORMAT(CONVERT_TZ(log_time,'+00:00','+05:30'),'%l %p') AS log_date,
subscriber_id,
(@rn := if(@clt = concat_ws(':', campaign_id, log_type, log_time), @rn + 1,
if(@clt := concat_ws(':', campaign_id, log_type, log_time), 1, 1)
)
) as rn
FROM stats.campaign_logs USE INDEX(campid_domain_logtype_logtime_subid_index) CROSS JOIN
(SELECT @rn := 0)
WHERE DOMAIN = 'xxx' AND
campaign_id = '123' AND
log_type IN ('EMAIL_SENT', 'EMAIL_OPENED', 'EMAIL_CLICKED') AND
log_time BETWEEN CONVERT_TZ('2015-02-01 00:00:00', '+00:00', '+05:30') AND
CONVERT_TZ('2015-03-01 23:59:58', '+00:00', '+05:30')
ORDER BY log_type, log_date, subscriber_id
) t
GROUP BY log_type, log_date;
This still requires another sort of the data, but it might help.