I read about Endianness and understood squat...
so I wrote this
main()
{
int k = 0xA5B9BF9F;
BYTE *b = (BYTE*)&k; //value at *b is 9f
b++; //value at *b is BF
b++; //value at *b is B9
b++; //value at *b is A5
}
k
was equal to A5 B9 BF 9F
and (byte)pointer "walk" o/p was 9F BF b9 A5
so I get it bytes are stored backwards...ok.
~
so now I thought how is it stored at BIT level...
I means is "9f"(1001 1111) stored as "f9"(1111 1001)?
so I wrote this
int _tmain(int argc, _TCHAR* argv[])
{
int k = 0xA5B9BF9F;
void *ptr = &k;
bool temp= TRUE;
cout<<"ready or not here I come \n"<<endl;
for(int i=0;i<32;i++)
{
temp = *( (bool*)ptr + i );
if( temp )
cout<<"1 ";
if( !temp)
cout<<"0 ";
if(i==7||i==15||i==23)
cout<<" - ";
}
}
I get some random output
even for nos. like "32" I dont get anything sensible.
why ?
Endianness, as you discovered by your experiment refers to the order that bytes are stored in an object.
Bits do not get stored differently, they're always 8 bits, and always "human readable" (high->low).
Now that we've discussed that you don't need your code... About your code:
for(int i=0;i<32;i++)
{
temp = *( (bool*)ptr + i );
...
}
This isn't doing what you think it's doing. You're iterating over 0-32, the number of bits in a word - good. But your temp
assignment is all wrong :)
It's important to note that a bool*
is the same size as an int*
is the same size as a BigStruct*
. All pointers on the same machine are the same size - 32bits on a 32bit machine, 64bits on a 64bit machine.
ptr + i
is adding i
bytes to the ptr
address. When i>3
, you're reading a whole new word... this could possibly cause a segfault.
What you want to use is bit-masks. Something like this should work:
for (int i = 0; i < 32; i++) {
unsigned int mask = 1 << i;
bool bit_is_one = static_cast<unsigned int>(ptr) & mask;
...
}