rmaxsimultaneous

which(vector1 < vector2)


Let's make a small example first, that computes in R:

x<- c(1,3,1,4,2)
max(which(x<2))
[1] 3

Now, I would like to do this not just for one value 2, but for many values simultaneously. It should give me something like that:

max(which(x<c(1,2,3,4,5,6)))
[1] NA 3 5 5 5 5

Of course I could run a for loop, but that is very slow:

for(i in c(1,2,3,4,5,6)){    
test[i]<-max(which(x<i))
}

Is there a fast way to do this?


Solution

  • Find the max index of each value seen in x:

    xvals    <- unique(x)
    xmaxindx <- length(x) - match(xvals,rev(x)) + 1L
    

    Rearrange

    xvals    <- xvals[order(xmaxindx,decreasing=TRUE)]
    xmaxindx <- xmaxindx[order(xmaxindx,decreasing=TRUE)]   
    # 2 4 1 3 
    # 5 4 3 2
    

    Select from those:

    xmaxindx[vapply(1:6,function(z){
      ok <- xvals < z
      if(length(ok)) which(ok)[1] else NA_integer_
    },integer(1))]
    # <NA>    1    2    2    2    2 
    #   NA    3    5    5    5    5 
    

    It handily reports the values (in the first row) along with the indices (second row).


    The sapply way is simpler and probably not slower:

    xmaxindx[sapply(1:6,function(z) which(xvals < z)[1])]    
    

    Benchmarks. The OP's case is not fully described, but here are some benchmarks anyway:

    # setup
    nicola <- function() max.col(outer(y,x,">"),ties.method="last")*NA^(y<=min(x))
    frank  <- function(){
        xvals    <- unique(x)
        xmaxindx <- length(x) - match(xvals,rev(x)) + 1L
    
        xvals    <- xvals[order(xmaxindx,decreasing=TRUE)]
        xmaxindx <- xmaxindx[order(xmaxindx,decreasing=TRUE)]   
        xmaxindx[vapply(y,function(z){
          ok <- xvals < z
          if(length(ok)) which(ok)[1] else NA_integer_
        },integer(1))]
    }
    beauvel <- function() 
        Vectorize(function(u) ifelse(length(which(x<u))==0,NA,max(which(x<u))))(y)
    davida <- function() vapply(y, function(i) c(max(which(x < i)),NA)[1], double(1))
    hallo <- function(){
        test <- vector("integer",length(y))
        for(i in y){    
            test[i]<-max(which(x<i))
        }
        test
    }
    josho <- function(){
        xo <- sort(unique(x))
        xi <- cummax(1L + length(x) - match(xo, rev(x)))
        xi[cut(y, c(xo, Inf))]
    }
    require(microbenchmark)
    

    (@MrHallo's and @DavidArenburg's throw a bunch of warnings the way I have them written now, but that could be fixed.) Here are some results:

    > x <- sample(1:4,1e6,replace=TRUE)
    > y <- 1:6 
    > microbenchmark(nicola(),frank(),beauvel(),davida(),hallo(),josho(),times=10)
    Unit: milliseconds
          expr      min       lq     mean   median        uq       max neval
      nicola() 76.17992 78.01171 99.75596 98.43919 120.81776 127.63058    10
       frank() 25.27245 25.44666 36.41508 28.44055  45.32306  73.66652    10
     beauvel() 47.70081 59.47828 67.44918 68.93808  74.12869  95.20936    10
      davida() 26.52582 26.55827 33.93855 30.00990  35.55436  57.24119    10
       hallo() 26.58186 26.63984 32.68850 28.68163  33.54364  50.49190    10
       josho() 25.69634 26.28724 37.95341 30.50828  47.90526  68.30376    10
    There were 20 warnings (use warnings() to see them)
    >  
    > 
    > x <- sample(1:80,1e6,replace=TRUE)
    > y <- 1:60
    > microbenchmark(nicola(),frank(),beauvel(),davida(),hallo(),josho(),times=10)
    Unit: milliseconds
          expr        min         lq       mean     median         uq       max neval
      nicola() 2341.96795 2395.68816 2446.60612 2481.14602 2496.77128 2504.8117    10
       frank()   25.67026   25.81119   42.80353   30.41979   53.19950  123.7467    10
     beauvel()  665.26904  686.63822  728.48755  734.04857  753.69499  784.7280    10
      davida()  326.79072  359.22803  390.66077  397.50163  420.66266  456.8318    10
       hallo()  330.10586  349.40995  380.33538  389.71356  397.76407  443.0808    10
       josho()   26.06863   30.76836   35.04775   31.05701   38.84259   57.3946    10
    There were 20 warnings (use warnings() to see them)
    >  
    > 
    > x <- sample(sample(1e5,1e1),1e6,replace=TRUE)
    > y <- sample(1e5,1e4)
    > microbenchmark(frank(),josho(),times=10)
    Unit: milliseconds
        expr      min       lq     mean   median       uq       max neval
     frank() 69.41371 74.53816 94.41251 89.53743 107.6402 134.01839    10
     josho() 35.70584 37.37200 56.42519 54.13120  63.3452  90.42475    10
    

    Of course, comparisons might come out differently for the OP's true case.