I'm learning about hash tables and quadratic probing in particular. I've read that if the load factor is <= 0.5 and the table's size is prime, quadratic probing will always find an empty slot and no key will be accessed multiple times. It then goes on to say that, in order to ensure efficient insertions, I should always maintain a load factor <= 0.5. What does this mean? Surely if we keep adding items, the load factor will increase until it equals 1 whether we want it to or not. So what is implied when my textbook says I should maintain a small load factor?
The implication is that at some point (when you would exceed a load factor of 0.5 in this case), you'll have to allocate a new table (which is bigger by some factor, maybe 1.5 or 2, and then rounded up to the nearest prime number) and copy all the elements from the old table into it (that's not a straight copy, the new position of an item will usually be different than the old position).