How can one neatly represent a graph in Python? (Starting from scratch i.e. no libraries!)
What data structure (e.g. dicts/tuples/dict(tuples)) will be fast but also memory efficient?
One must be able to do various graph operations on it.
As pointed out, the various graph representations might help. How does one go about implementing them in Python?
As for the libraries, this question has quite good answers.
Even though this is a somewhat old question, I thought I'd give a practical answer for anyone stumbling across this.
Let's say you get your input data for your connections as a list of tuples like so:
[('A', 'B'), ('B', 'C'), ('B', 'D'), ('C', 'D'), ('E', 'F'), ('F', 'C')]
The data structure I've found to be most useful and efficient for graphs in Python is a dict of sets. This will be the underlying structure for our Graph
class. You also have to know if these connections are arcs (directed, connect one way) or edges (undirected, connect both ways). We'll handle that by adding a directed
parameter to the Graph.__init__
method. We'll also add some other helpful methods.
import pprint
from collections import defaultdict
class Graph(object):
""" Graph data structure, undirected by default. """
def __init__(self, connections, directed=False):
self._graph = defaultdict(set)
self._directed = directed
self.add_connections(connections)
def add_connections(self, connections):
""" Add connections (list of tuple pairs) to graph """
for node1, node2 in connections:
self.add(node1, node2)
def add(self, node1, node2):
""" Add connection between node1 and node2 """
self._graph[node1].add(node2)
if not self._directed:
self._graph[node2].add(node1)
def remove(self, node):
""" Remove all references to node """
for n, cxns in self._graph.items(): # python3: items(); python2: iteritems()
try:
cxns.remove(node)
except KeyError:
pass
try:
del self._graph[node]
except KeyError:
pass
def is_connected(self, node1, node2):
""" Is node1 directly connected to node2 """
return node1 in self._graph and node2 in self._graph[node1]
def find_path(self, node1, node2, path=[]):
""" Find any path between node1 and node2 (may not be shortest) """
path = path + [node1]
if node1 == node2:
return path
if node1 not in self._graph:
return None
for node in self._graph[node1]:
if node not in path:
new_path = self.find_path(node, node2, path)
if new_path:
return new_path
return None
def __str__(self):
return '{}({})'.format(self.__class__.__name__, dict(self._graph))
I'll leave it as an "exercise for the reader" to create a find_shortest_path
and other methods.
Let's see this in action though...
>>> connections = [('A', 'B'), ('B', 'C'), ('B', 'D'),
('C', 'D'), ('E', 'F'), ('F', 'C')]
>>> g = Graph(connections, directed=True)
>>> pretty_print = pprint.PrettyPrinter()
>>> pretty_print.pprint(g._graph)
{'A': {'B'},
'B': {'D', 'C'},
'C': {'D'},
'E': {'F'},
'F': {'C'}}
>>> g = Graph(connections) # undirected
>>> pretty_print = pprint.PrettyPrinter()
>>> pretty_print.pprint(g._graph)
{'A': {'B'},
'B': {'D', 'A', 'C'},
'C': {'D', 'F', 'B'},
'D': {'C', 'B'},
'E': {'F'},
'F': {'E', 'C'}}
>>> g.add('E', 'D')
>>> pretty_print.pprint(g._graph)
{'A': {'B'},
'B': {'D', 'A', 'C'},
'C': {'D', 'F', 'B'},
'D': {'C', 'E', 'B'},
'E': {'D', 'F'},
'F': {'E', 'C'}}
>>> g.remove('A')
>>> pretty_print.pprint(g._graph)
{'B': {'D', 'C'},
'C': {'D', 'F', 'B'},
'D': {'C', 'E', 'B'},
'E': {'D', 'F'},
'F': {'E', 'C'}}
>>> g.add('G', 'B')
>>> pretty_print.pprint(g._graph)
{'B': {'D', 'G', 'C'},
'C': {'D', 'F', 'B'},
'D': {'C', 'E', 'B'},
'E': {'D', 'F'},
'F': {'E', 'C'},
'G': {'B'}}
>>> g.find_path('G', 'E')
['G', 'B', 'D', 'C', 'F', 'E']