I need an algorithm that can do a one-to-one mapping (ie. no collision) of a 32-bit signed integer onto another 32-bit signed integer.
My real concern is enough entropy so that the output of the function appears to be random. Basically I am looking for a cipher similar to XOR Cipher but that can generate more arbitrary-looking outputs. Security is not my real concern, although obscurity is.
Edit for clarification purpose:
Example expected result:
F(100) = 98456
F(101) = -758
F(102) = 10875498
F(103) = 986541
F(104) = 945451245
F(105) = -488554
Just like MD5, changing one thing may change lots of things.
I am looking for a mathematical function, so manually mapping integers is not a solution for me. For those who are asking, algorithm speed is not very important.
Use any 32-bit block cipher! By definition, a block cipher maps every possible input value in its range to a unique output value, in a reversible fashion, and by design, it's difficult to determine what any given value will map to without the key. Simply pick a key, keep it secret if security or obscurity is important, and use the cipher as your transformation.
For an extension of this idea to non-power-of-2 ranges, see my post on Secure Permutations with Block Ciphers.
Addressing your specific concerns: