Hi I got differents results from dplyr function when I use standard evaluation through lazyeval package.
Here is how to reproduce something close to my real datas with 250k rows and about 230k groups. I would like to group by id1, id2 and subset the rows with the max(datetime) for each group.
library(dplyr)
# random datetime generation function by Dirk Eddelbuettel
# http://stackoverflow.com/questions/14720983/efficiently-generate-a-random-sample-of-times-and-dates-between-two-dates
rand.datetime <- function(N, st = "2012/01/01", et = "2015/08/13") {
st <- as.POSIXct(as.Date(st))
et <- as.POSIXct(as.Date(et))
dt <- as.numeric(difftime(et,st,unit="sec"))
ev <- sort(runif(N, 0, dt))
rt <- st + ev
}
set.seed(42)
# Creating 230000 ids couples
ids <- data_frame(id1 = stringi::stri_rand_strings(23e4, 9, pattern = "[0-9]"),
id2 = stringi::stri_rand_strings(23e4, 9, pattern = "[0-9]"))
# Repeating randomly the ids[1:2000, ] to create groups
ids <- rbind(ids, ids[sample(1:2000, 20000, replace = TRUE), ])
datas <- mutate(ids, datetime = rand.datetime(25e4))
When I use the NSE way I got 230000 rows
df1 <-
datas %>%
group_by(id1, id2) %>%
filter(datetime == max(datetime))
nrow(df1) #230000
But when I use the SE, I got only 229977 rows
ids <- c("id1", "id2")
filterVar <- "datetime"
filterFun <- "max"
df2 <-
datas %>%
group_by_(ids) %>%
filter_(.dots = lazyeval::interp(~var == fun(var),
var = as.name(filterVar),
fun = as.name(filterFun)))
nrow(df2) #229977
My two pieces of code are equivalent right ? Why do I experience different results ? Thanks.
You'll need to specify the .dots
argument in group_by_
when giving a vector of column names.
df2 <- datas %>%
group_by_(.dots = ids) %>%
filter_(.dots = lazyeval::interp(~var == fun(var),
var = as.name(filterVar),
fun = as.name(filterFun)))
nrow(df2)
[1] 230000
It looks like group_by_
might take the first column name from the vector as the only grouping variable when you don't specify the .dots
argument. You can check this by grouping on id1
only.
df1 <- datas %>%
group_by(id1) %>%
filter(datetime == max(datetime))
nrow(df1)
[1] 229977
(If you group just on id2
the number of rows is 229976).