c++mpidistributed-computingintel-mklscalapack

Fix arithmetic error in distributed version


I am inverting a matrix via a Cholesky factorization, in a distributed environment, as it was discussed here. My code works fine, but in order to test that my distributed project produces correct results, I had to compare it with the serial version. The results are not exactly the same!

For example, the last five cells of the result matrix are:

serial gives:
-250207683.634793 -1353198687.861288 2816966067.598196 -144344843844.616425 323890119928.788757
distributed gives:
-250207683.634692 -1353198687.861386 2816966067.598891 -144344843844.617096 323890119928.788757

I had post in the Intel forum about that, but the answer I got was about getting the same results across all the executions I will make with the distributed version, something that I already had. They seem (in another thread) to be unable to respond to this:

How to get same results, between serial and distributed execution? Is this possible? This would result in fixing the arithmetic error.

I have tried setting this: mkl_cbwr_set(MKL_CBWR_AVX); and using mkl_malloc(), in order to align memory, but nothing changed. I will get the same results, only in the case that I will spawn one process for the distributed version (which will make it almost serial)!

The distributed routines I am calling: pdpotrf() and pdpotri().

The serial routines I am calling: dpotrf() and dpotri().


Solution

  • Your differences seem to appear at about the 12th s.f. Since floating-point arithmetic is not truly associative (that is, f-p arithmetic does not guarantee that a+(b+c) == (a+b)+c), and since parallel execution does not, generally, give a deterministic order of the application of operations, these small differences are typical of parallelised numerical codes when compared to their serial equivalents. Indeed you may observe the same order of difference when running on a different number of processors, 4 vs 8, say.

    Unfortunately the easy way to get deterministic results is to stick to serial execution. To get deterministic results from parallel execution requires a major effort to be very specific about the order of execution of operations right down to the last + or * which almost certainly rules out the use of most numeric libraries and leads you to painstaking manual coding of large numeric routines.

    In most cases that I've encountered the accuracy of the input data, often derived from sensors, does not warrant worrying about the 12th or later s.f. I don't know what your numbers represent but for many scientists and engineers equality to the 4th or 5th sf is enough equality for all practical purposes. It's a different matter for mathematicians ...