I have just begun using lasagne and Theano to do some machine learning on Python.
I am trying to modify the softmax class in Theano. I want to change how the activation function(softmax) is calculated. Instead of dividing e_x by e_x.sum(axis=1), I want to divide e_x by sum of three consecutive numbers.
For instance, the result will be as follows:
sm[0] = e_x[0]/(e_x[0]+e_x[1]+e_x[2])
sm[1] = e_x[1]/(e_x[0]+e_x[1]+e_x[2])
sm[2] = e_x[2]/(e_x[0]+e_x[1]+e_x[2])
sm[3] = e_x[3]/(e_x[3]+e_x[4]+e_x[5])
sm[4] = e_x[4]/(e_x[3]+e_x[4]+e_x[5])
sm[5] = e_x[5]/(e_x[3]+e_x[4]+e_x[5])
and so on...
The problem is that I cannot quite grasp how theano carries out the computation.
Here is my main question. Does it suffice to just change the perform() function in the softmax class?
Here is the original perform() function:
def perform(self, node, input_storage, output_storage):
x, = input_storage
e_x = numpy.exp(x - x.max(axis=1)[:, None])
sm = e_x / e_x.sum(axis=1)[:, None]
output_storage[0][0] = sm
Here is my modified perform()
def myPerform(self, node, input_storage, output_storage):
x, = input_storage
e_x = numpy.exp(x - x.max(axis=1)[:, None])
sm = numpy.zeros_like(e_x)
for i in range(0,symbolCount):
total = e_x[3*i] + e_x[3*i+1] + e_x[3*i+2]
sm[3*i] = e_x[3*i]/total
sm[3*i+1] = e_x[3*i+1]/total
sm[3*i+2] = e_x[3*i+2]/total
output_storage[0][0] = sm
With the current code, I am getting 'unorderable types:int()>str()' error when I use the predict method in lasagne.
For something like this you're probably better off constructing a custom softmax via symbolic expressions rather than creating (or modifying) an operation.
Your custom softmax can be defined in terms of symbolic expressions. Doing it this way will give you gradients (and other Theano operation bits and pieces) "for free" but might run slightly slower than a custom operation could.
Here's an example:
import numpy
import theano
import theano.tensor as tt
x = tt.matrix()
# Use the built in softmax operation
y1 = tt.nnet.softmax(x)
# A regular softmax operation defined via ordinary Theano symbolic expressions
y2 = tt.exp(x)
y2 = y2 / y2.sum(axis=1)[:, None]
# Custom softmax operation
def custom_softmax(a):
b = tt.exp(a)
b1 = b[:, :3] / b[:, :3].sum(axis=1)[:, None]
b2 = b[:, 3:] / b[:, 3:].sum(axis=1)[:, None]
return tt.concatenate([b1, b2], axis=1)
y3 = custom_softmax(x)
f = theano.function([x], outputs=[y1, y2, y3])
x_value = [[.1, .2, .3, .4, .5, .6], [.1, .3, .5, .2, .4, .6]]
y1_value, y2_value, y3_value = f(x_value)
assert numpy.allclose(y1_value, y2_value)
assert y3_value.shape == y1_value.shape
a = numpy.exp(.1) + numpy.exp(.2) + numpy.exp(.3)
b = numpy.exp(.4) + numpy.exp(.5) + numpy.exp(.6)
c = numpy.exp(.1) + numpy.exp(.3) + numpy.exp(.5)
d = numpy.exp(.2) + numpy.exp(.4) + numpy.exp(.6)
assert numpy.allclose(y3_value, [
[numpy.exp(.1) / a, numpy.exp(.2) / a, numpy.exp(.3) / a, numpy.exp(.4) / b, numpy.exp(.5) / b, numpy.exp(.6) / b],
[numpy.exp(.1) / c, numpy.exp(.3) / c, numpy.exp(.5) / c, numpy.exp(.2) / d, numpy.exp(.4) / d, numpy.exp(.6) / d]
]), y3_value