A binary tree of N nodes is 'curious' if it is a binary tree whose node values are 1, 2, ..,N and which satisfy the property that
Example of a curious binary tree
4
/ \
5 2
/ \
1 3
Can you give an algorithm to generate a uniformly random curious binary tree of n nodes, which runs in O(n) guaranteed time?
Assume you only have access to a random number generator which can give you a (uniformly distributed) random number in the range [1, k] for any 1 <= k <= n. Assume the generator runs in O(1).
I would like to see an O(nlogn) time solution too.
Please follow the usual definition of labelled binary trees being distinct, to consider distinct curious binary trees.
Aha, I think I've got how to create a random heap in O(N) time. (after which, use approach in Greg Kuperberg's answer to transform into "curious" binary tree.)
edit 2: Rough pseudocode for making a random min-heap directly. Max-heap is identical except the values inserted into the heap are in reverse numerical order.
struct Node {
Node left, right;
Object key;
constructor newNode() {
N = new Node;
N.left = N.right = null;
N.key = null;
}
}
function create-random-heap(RandomNumberGenerator rng, int N)
{
Node heap = Node.newNode();
// Creates a heap with an "incomplete" node containing a null, and having
// both child nodes as null.
List incompleteHeapNodes = [heap];
// use a vector/array type list to keep track of incomplete heap nodes.
for k = 1:N
{
// loop invariant: incompleteHeapNodes has k members. Order is unimportant.
int m = rng.getRandomNumber(k);
// create a random number between 0 and k-1
Node node = incompleteHeapNodes.get(m);
// pick a random node from the incomplete list,
// make it a complete node with key k.
// It is ok to do so since all of its parent nodes
// have values less than k.
node.left = Node.newNode();
node.right = Node.newNode();
node.key = k;
// Now remove this node from incompleteHeapNodes
// and add its children. (replace node with node.left,
// append node.right)
incompleteHeapNodes.set(m, node.left);
incompleteHeapNodes.append(node.right);
// All operations in this loop take O(1) time.
}
return prune-null-nodes(heap);
}
// get rid of all the incomplete nodes.
function prune-null-nodes(heap)
{
if (heap == null || heap.key == null)
return null;
heap.left = prune-null-nodes(heap.left);
heap.right = prune-null-nodes(heap.right);
}