I did use the findcontours()
method to extract contour from the image, but I have no idea how to calculate the curvature from a set of contour points. Can somebody help me? Thank you very much!
For me curvature is:
where t
is the position inside the contour and x(t)
resp. y(t)
return the related x
resp. y
value. See here.
So, according to my definition of curvature, one can implement it this way:
std::vector< float > vecCurvature( vecContourPoints.size() );
cv::Point2f posOld, posOlder;
cv::Point2f f1stDerivative, f2ndDerivative;
for (size_t i = 0; i < vecContourPoints.size(); i++ )
{
const cv::Point2f& pos = vecContourPoints[i];
if ( i == 0 ){ posOld = posOlder = pos; }
f1stDerivative.x = pos.x - posOld.x;
f1stDerivative.y = pos.y - posOld.y;
f2ndDerivative.x = - pos.x + 2.0f * posOld.x - posOlder.x;
f2ndDerivative.y = - pos.y + 2.0f * posOld.y - posOlder.y;
float curvature2D = 0.0f;
if ( std::abs(f2ndDerivative.x) > 10e-4 && std::abs(f2ndDerivative.y) > 10e-4 )
{
curvature2D = sqrt( std::abs(
pow( f2ndDerivative.y*f1stDerivative.x - f2ndDerivative.x*f1stDerivative.y, 2.0f ) /
pow( f2ndDerivative.x + f2ndDerivative.y, 3.0 ) ) );
}
vecCurvature[i] = curvature2D;
posOlder = posOld;
posOld = pos;
}
It works on non-closed pointlists as well. For closed contours, you may would like to change the boundary behavior (for the first iterations).
UPDATE:
Explanation for the derivatives:
A derivative for a continuous 1 dimensional function f(t)
is:
But we are in a discrete space and have two discrete functions f_x(t)
and f_y(t)
where the smallest step for t
is one.
The second derivative is the derivative of the first derivative:
Using the approximation of the first derivative, it yields to:
There are other approximations for the derivatives, if you google it, you will find a lot.