algorithmmatlabgeometrynearest-neighborfeature-descriptor

Finding nearest neighbours of radial segments


First, don't be scared by the looks of this question ;)

I'm trying to implement a shape descriptor in matlab called Circular Blurred Shape Model, and part of this is to get a list of nearest neighbours for every radial segment as can be seen in Figure 1d)

I went for a straight and simple implementation in MATLAB but I'm stuck at Step 5 and 6 of the algorithm, mainly because I can't wrap my head around the definition:

Xb{c,s} = {b1, ..., b{c*s}} as the sorted set of the elements in B* 
so that d(b*{c,s}, bi*) <= d(b*{c,s}, bj*), i<j

For me this sounds like a cascaded sorting, first sort by ascending distance and then by ascending index, but the nearest neighbours I find are not according to the paper.

Circulare Blurred Shape Model Description Algorithm

As an example I show you the nearest neighbours I obtain for the segment b{4,1}, this is the one marked "EX" in Figure 1d)

I get the following list of nearest neighbors for b{4,1}: b{3,2}, b{3,1}, b{3,8}, b{2,1}, b{2,8}

correct according to the paper would be: b{4,2}, b{4,8}, b{3,2}, b{3,1}, b{3,8}

However my points actually are the closest set to the selected segment measured by euclidean distance! The distance b{4,1} <=> b{2,1} is smaller than b{4,1} <=> b{4,2} or b{4,1} <=> b{4,8}...

enter image description here

And here is my (ugly, but straight forward) MATLAB code:

width  = 734;
height = 734;

assert(width == height, 'Image must be square in size!');

% Radius of the correlogram
R = width;

% Number of circles in correlogram
C = 4;

% Number of sections in correlogram
S = 8;

% "width" of ring segments
d = R/C;

% angle of one segment in degrees
g = 360/S;

% set of bins for the circular description of I
B = zeros(C, S);

% centroid coordinates for bins
B_star = zeros(C,S,2);


% calculate centroids of bins
for c=1:C
    for s=1:S
        alpha = deg2rad(max(s-1, 0)*g + g/2);
        r     = d*max((c-1),0) + d/2;

        B_star(c,s,1) = r*cos(alpha);
        B_star(c,s,2) = r*sin(alpha);
    end
end

% create sorted list of bin numbers which fullfill
% d(b{c,s}*, bi*) <= d(b{c,s}, bj*) where i<j

% B_star_dists is a simple square distance matrix for getting
% the distance between two centroids c_i,s_i and c_j,s_j
B_star_dists = zeros(C*S, C*S);
for i=1:C*S
    [c_i, s_i] = ind2sub([C,S], i);
    % x,y centroid coordinates for point i
    b_star_i   = [B_star(c_i, s_i, 1), B_star(c_i, s_i, 2)];

    for j=1:C*S
        [c_j, s_j] = ind2sub([C,S], j);
        % x,y centroid coordinates for point j
        b_star_j   = [B_star(c_j, s_j, 1), B_star(c_j, s_j, 2)];

        % store the euclidean distance between these two centroids
        % in the distance matrix.
        B_star_dists(i,j) = norm(b_star_i - b_star_j);
    end
end

% calculate nearest neighbour "centroids" for each centroid
% B_NN is a cell array, B{idx} gives an array of indexes to the 
% nearest neighbour centroids. 

B_NN = cell(C*S, 1);
for i=1:C*S
    [c_i, s_i] = ind2sub([C,S], i);

    % get a (C*S)x2 matrix of all distances, the first column are the array
    % indexes and the second column are the distances e.g
    % 1   d1
    % 2   d2
    % ..  ..
    % CS  d{c,s}

    dists = [transpose(1:C*S), B_star_dists(:, i)];

    % sort ascending by the distances first (e.g second column) then
    % sort ascending by the array index (e.g first column)
    dists = sortrows(dists, [2,1]);

    % middle section has nine neighbours, set as default
    neighbour_count = 9;

    if c_i == 1
        % inner region has S+3 neighbours
        neighbour_count = S+3;
    elseif c_i == C
        % outer most ring has 6 neighbours
        neighbour_count = 6;
    end

    B_NN{i} = dists(1:neighbour_count,1);
end

% FROM HERE ON JUST VISUALIZATION CODE

figure(1);
hold on;
for c=1:C
    % plot circles
    r = c*d;
    plot(r*cos(0:pi/50:2*pi), r*sin(0:pi/50:2*pi), 'k:');
end

for s=1:S
    % plot lines

    line_len = C*d;
    alpha    = deg2rad(s*g); 

    start_pt = [0, 0];
    end_pt   = start_pt + line_len.*[cos(alpha), sin(alpha)];

    plot([start_pt(1), end_pt(1)], [start_pt(2), end_pt(2)], 'k-');
end

for c=1:C
    % plot centroids of segments
    for s=1:S
        segment_centroid = B_star(c,s, :);
        plot(segment_centroid(1), segment_centroid(2), '.k');
    end
end

% plot some nearest neighbours
% list of [C;S] 
plot_nn = [4;1];

for i = 1:size(plot_nn,2) 
   start_c = plot_nn(1,i);
   start_s = plot_nn(2,i);

   start_pt = [B_star(start_c, start_s,1), B_star(start_c, start_s,2)];
   start_idx = sub2ind([C, S], start_c, start_s);

   plot(start_pt(1), start_pt(2), 'xb');

   nn_idx_list = B_NN{start_idx};

   for j = 1:length(nn_idx_list)
      nn_idx = nn_idx_list(j); 
      [nn_c, nn_s] = ind2sub([C, S], nn_idx);
      nn_pt = [B_star(nn_c, nn_s,1), B_star(nn_c, nn_s,2)];

      plot(nn_pt(1), nn_pt(2), 'xr');
   end
end

The full paper can be found here


Solution

  • The paper talks about "region neighbours"; the interpretation that these are the "nearest neighbours" in a Euclidian distance sense is incorrect. They are simply regions that are neighbours of a certain region, and the method of finding them is trivial:

    The regions have 2 coordinates: (c,s) where c denotes which concentric circle they're part of, from 1 in the center to C at the edge, and s denotes which sector they're part of, from 1 starting at angle 0° to S ending at angle 360°.

    Every region whose c and s coordinates differ at most 1 from the region's coordinates, is a neighbouring region (segment numbers wrap around from S to 1.) Depending on the location of the region, there are 3 cases: (as illustrated in fig. 1d)