I have points (e.g., lat, lon pairs of cell tower locations) and I need to get the polygon of the Voronoi cells they form.
from scipy.spatial import Voronoi
tower = [[ 24.686 , 46.7081],
[ 24.686 , 46.7081],
[ 24.686 , 46.7081]]
c = Voronoi(towers)
Now, I need to get the polygon boundaries in lat,lon coordinates for each cell (and what was the centroid this polygon surrounds). I need this Voronoi to be bounded as well. Meaning that the boundaries don't go to infinity, but rather within a bounding box.
Given a rectangular bounding box, my first idea was to define a kind of intersection operation between this bounding box and the Voronoï diagram produce by scipy.spatial.Voronoi
. An idea not necessarily great, since this requires to code a large number of basic functions of computational geometry.
However, here is the second idea (hack?) that came to my mind: the algorithms to compute the Voronoï diagram of a set of n
points in the plane have a time complexity of O(n ln(n))
. What about adding points to constraint the Voronoï cells of the initial points to lie in the bounding box?
A picture is worth a great speech:
What I did here? That's pretty simple! The initial points (in blue) lie in [0.0, 1.0] x [0.0, 1.0]
. Then I get the points (in blue) on the left (i.e. [-1.0, 0.0] x [0.0, 1.0]
) by a reflection symmetry according to x = 0.0
(left edge of the bounding box). With reflection symmetries according to x = 1.0
, y = 0.0
and y = 1.0
(other edges of the bounding box), I get all the points (in blue) I need to do the job.
Then I run scipy.spatial.Voronoi
. The previous image depicts the resulting Voronoï diagram (I use scipy.spatial.voronoi_plot_2d
).
What to do next? Just filter points, edges or faces according to the bounding box. And get the centroid of each face according to the well-known formula to compute centroid of polygon. Here is an image of the result (centroids are in red):
Great! It seems to work. What if after one iteration I try to re-run the algorithm on the centroids (in red) rather than the initial points (in blue)? What if I try it again and again?
Step 2
Step 10
Step 25
Cool! Voronoï cells tend to minimize their energy...
import matplotlib.pyplot as pl
import numpy as np
import scipy as sp
import scipy.spatial
import sys
eps = sys.float_info.epsilon
n_towers = 100
towers = np.random.rand(n_towers, 2)
bounding_box = np.array([0., 1., 0., 1.]) # [x_min, x_max, y_min, y_max]
def in_box(towers, bounding_box):
return np.logical_and(np.logical_and(bounding_box[0] <= towers[:, 0],
towers[:, 0] <= bounding_box[1]),
np.logical_and(bounding_box[2] <= towers[:, 1],
towers[:, 1] <= bounding_box[3]))
def voronoi(towers, bounding_box):
# Select towers inside the bounding box
i = in_box(towers, bounding_box)
# Mirror points
points_center = towers[i, :]
points_left = np.copy(points_center)
points_left[:, 0] = bounding_box[0] - (points_left[:, 0] - bounding_box[0])
points_right = np.copy(points_center)
points_right[:, 0] = bounding_box[1] + (bounding_box[1] - points_right[:, 0])
points_down = np.copy(points_center)
points_down[:, 1] = bounding_box[2] - (points_down[:, 1] - bounding_box[2])
points_up = np.copy(points_center)
points_up[:, 1] = bounding_box[3] + (bounding_box[3] - points_up[:, 1])
points = np.append(points_center,
np.append(np.append(points_left,
points_right,
axis=0),
np.append(points_down,
points_up,
axis=0),
axis=0),
axis=0)
# Compute Voronoi
vor = sp.spatial.Voronoi(points)
# Filter regions
regions = []
for region in vor.regions:
flag = True
for index in region:
if index == -1:
flag = False
break
else:
x = vor.vertices[index, 0]
y = vor.vertices[index, 1]
if not(bounding_box[0] - eps <= x and x <= bounding_box[1] + eps and
bounding_box[2] - eps <= y and y <= bounding_box[3] + eps):
flag = False
break
if region != [] and flag:
regions.append(region)
vor.filtered_points = points_center
vor.filtered_regions = regions
return vor
def centroid_region(vertices):
# Polygon's signed area
A = 0
# Centroid's x
C_x = 0
# Centroid's y
C_y = 0
for i in range(0, len(vertices) - 1):
s = (vertices[i, 0] * vertices[i + 1, 1] - vertices[i + 1, 0] * vertices[i, 1])
A = A + s
C_x = C_x + (vertices[i, 0] + vertices[i + 1, 0]) * s
C_y = C_y + (vertices[i, 1] + vertices[i + 1, 1]) * s
A = 0.5 * A
C_x = (1.0 / (6.0 * A)) * C_x
C_y = (1.0 / (6.0 * A)) * C_y
return np.array([[C_x, C_y]])
vor = voronoi(towers, bounding_box)
fig = pl.figure()
ax = fig.gca()
# Plot initial points
ax.plot(vor.filtered_points[:, 0], vor.filtered_points[:, 1], 'b.')
# Plot ridges points
for region in vor.filtered_regions:
vertices = vor.vertices[region, :]
ax.plot(vertices[:, 0], vertices[:, 1], 'go')
# Plot ridges
for region in vor.filtered_regions:
vertices = vor.vertices[region + [region[0]], :]
ax.plot(vertices[:, 0], vertices[:, 1], 'k-')
# Compute and plot centroids
centroids = []
for region in vor.filtered_regions:
vertices = vor.vertices[region + [region[0]], :]
centroid = centroid_region(vertices)
centroids.append(list(centroid[0, :]))
ax.plot(centroid[:, 0], centroid[:, 1], 'r.')
ax.set_xlim([-0.1, 1.1])
ax.set_ylim([-0.1, 1.1])
pl.savefig("bounded_voronoi.png")
sp.spatial.voronoi_plot_2d(vor)
pl.savefig("voronoi.png")