I'm attempting to work with pixel data that is output to a DVI chip. A variety of clock frequencies are used because the DVI chip registers are programmed using I2C (therefore needs a clock < 500 KHz) - from a clock divider.
The DVI chip needs a 40 MHz differential pixel clock, however, the DVI takes displays half a byte twice a cycle, so a further 80 MHz clock is needed to push each half of the pixel onto the data lines with each half cycle, these are from a DCM.
This has led to a variety of problems. I attempted to just use the double pixel clock rate to swap each half of the pixel, however I got the error:
This design contains a global buffer instance, <out2_bufg>,
driving the net, <pxlclk_p_int>, that is driving the following (first 30)
non-clock load pins.
So I added a BUFG element between the output of the DCM and the components using the signal - but it hasn't changed anything, instead the error is now thrown twice on both the input and output of the BUFG.
My code is below; I've tried to cut out the unrelated things that aren't related to the clock but its still quite long!
EDIT 1: I have added the block, which when added to the system, caused the error (that wasn't there before) Its in the second block of code! I am currently working on the other suggestions RE the differential signalling, and will edit again when done!
Thanks very much,
David
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;
library UNISIM;
use UNISIM.VComponents.all;
ENTITY I2CBus IS
PORT(
SYSCLK_N : IN STD_LOGIC; --system 200MHz differential clock
SYSCLK_P : IN STD_LOGIC;
BTN : IN STD_LOGIC; -- to manually change reset
LED : OUT STD_LOGIC_VECTOR(3 downto 0); --to observe reset value
SCL_DBG : OUT STD_LOGIC; -- copy of SCL to output pin
SDA_DBG : OUT STD_LOGIC; --copy of SDA to output pin
SCL : OUT STD_LOGIC; --Serial Clock Line
SDA : INOUT STD_LOGIC; --Serial Data Line
DVIRESET_N : OUT STD_LOGIC; --reset_n to dvi device
DVI_ENABLE : OUT STD_LOGIC; --enable DVI device inputs (active high)
PXLCLK_P : OUT STD_LOGIC; --pixel clock differential pair through buffers
PXLCLK_N : OUT STD_LOGIC;
DVI_DATA : OUT STD_LOGIC_VECTOR(11 downto 0); --12 bit multiplexed pixel to DVI
HSYNC : OUT STD_LOGIC; --Horizontal/Vertical sync timing pulses
VSYNC : OUT STD_LOGIC
);
END I2CBus;
ARCHITECTURE behavior OF I2CBus IS
COMPONENT IIC_MASTER --sends data to write out onto SDA bus line in I2C protocol
PORT(SCL : IN STD_LOGIC;
SCL2X : IN STD_LOGIC;
RESET_N : IN STD_LOGIC;
ENA : IN STD_LOGIC;
ADR : IN STD_LOGIC_VECTOR(6 DOWNTO 0);
REG : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
RW : IN STD_LOGIC;
DAT_WR : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
BUSY : OUT STD_LOGIC;
SDA : INOUT STD_LOGIC;
ACK_ERR : BUFFER STD_LOGIC);
END COMPONENT IIC_MASTER;
COMPONENT DCM --takes input system differential clocks, generates further clocks
PORT(
SYSCLK_P : IN STD_LOGIC; -- CLOCK IN PORTS 200MHZ DIFFERENTIAL
SYSCLK_N : IN STD_LOGIC;
-- CLOCK OUT PORTS
SYSCLK : OUT STD_LOGIC;
PXLCLK : OUT STD_LOGIC;
PXLCLK2X : OUT STD_LOGIC
);
END COMPONENT;
COMPONENT CLK_DIVIDER --divides system clock down for i2c bus clock line
GENERIC(INPUT_FREQ : INTEGER;
OUT1_FREQ : INTEGER;
OUT2_FREQ : INTEGER);
PORT(SYSCLK : IN STD_LOGIC;
RESET_N : IN STD_LOGIC;
RESET_N_OUT : OUT STD_LOGIC;
OUT1 : OUT STD_LOGIC;
OUT2 : OUT STD_LOGIC);
END COMPONENT CLK_DIVIDER;
COMPONENT DVI_INITIALISE --initialises CH7301c registers to necessary operation values
PORT(SYSCLK : IN STD_LOGIC;
ACK_ERR : IN STD_LOGIC;
BUSY : IN STD_LOGIC;
RESET_N : IN STD_LOGIC;
COUNT : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
DVI_WR : OUT STD_LOGIC := '0';
DVI_REGDATA : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
DVI_WDATA : OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END COMPONENT DVI_INITIALISE;
COMPONENT DVI_INTERFACE --outputs sync pulses, controls enable and manages pixel addresses
PORT(PIXEL_CLK : IN STD_LOGIC;
RESET_N : IN STD_LOGIC;
PXL_ADDR : OUT STD_LOGIC_VECTOR(19 DOWNTO 0) := (OTHERS => '0');
HSYNC, VSYNC : OUT STD_LOGIC := '1';
ENABLE : OUT STD_LOGIC := '0');
END COMPONENT DVI_INTERFACE;
COMPONENT DVI_MUX
PORT(PXLCLK : IN STD_LOGIC;
PXLCLK2X : IN STD_LOGIC;
PXL_DAT : IN STD_LOGIC_VECTOR(23 DOWNTO 0); --pixel as RGB
DATA : OUT STD_LOGIC_VECTOR(11 DOWNTO 0); --multiplexed output
RESET_N : IN STD_LOGIC); --reset low signal
END COMPONENT DVI_MUX;
--Inputs
signal reset_n_input : std_logic; -- input reset from button
----Outputs ------
signal sda_internal : STD_LOGIC; -- Internal SDA
----Clocks-----
signal SCL_internal : std_logic; -- i2c clock
signal SCL2X_internal : std_logic; -- i2c x2 to load SDA data
signal sysclk : std_logic; --system clock
signal pxlclk_p_int : std_logic; --differential pixel clock pair
signal pxlclk_n_int : std_logic;
signal pxlclk : std_logic; --pxlclk after BUFG
signal pxlclk2x_int : STD_LOGIC; --2x pixel clock for loading pixel data
-----Internal Control Signals ---
signal reset_n : std_logic; --active high
signal busy : std_logic; --low when not i2c not busy
signal ack_err : std_logic; --high when i2c ackknowledge error occurs
----Internal Data-----
signal i2c_reg : STD_LOGIC_VECTOR(7 DOWNTO 0); --register data for I2C
signal i2c_rw : STD_LOGIC; --R/W* for I2C
signal i2c_data : STD_LOGIC_VECTOR(7 DOWNTO 0); --Data for I2C
BEGIN
master : IIC_Master
port map(
SCL => SCL_internal,
SCL2X => SCL2X_internal,
RESET_N => RESET_N,
ENA => '1',
ADR => "1110110",
REG => i2c_reg,
RW => i2c_rw,
DAT_WR => i2c_data,
BUSY => busy,
SDA => sda_internal,
ACK_ERR => ack_err
);
DCM_SYS : DCM
port map(
SYSCLK_P => SYSCLK_P, --take differential input clock
SYSCLK_N => SYSCLK_N,
SYSCLK => sysclk, --200 MHz system clock
PXLCLK => pxlclk, --and pixel clock
PXLCLK2X => pxlclk2x_int --pixel clock at double rate
);
Clk_Div : Clk_Divider
generic map(
INPUT_FREQ => 200000000, --200 MHz system input
OUT1_FREQ => 100000, --to work correctly, 200 must go into all frequencies (x2).
OUT2_FREQ => 200000 --i.e. from 200, cannot generate 40 as 200/40/2 = 2.5, which will be 2
)
port map(
SYSCLK => sysclk,
RESET_N => reset_n_input,
RESET_N_OUT => reset_n,
OUT1 => scl_internal,
OUT2 => scl2x_internal
);
data_load : component DVI_INITIALISE
port map(
SYSCLK => sysclk,
ACK_ERR => ack_err,
BUSY => busy,
RESET_N => reset_n,
COUNT => LED,
DVI_WR => i2c_rw,
DVI_REGDATA => i2c_reg,
DVI_WDATA => i2c_data
);
interface : DVI_INTERFACE
port map(
PIXEL_CLK => pxlclk_p_int,
RESET_N => reset_n,
PXL_ADDR => open,
HSYNC => HSYNC,
VSYNC => VSYNC,
ENABLE => DVI_ENABLE
);
pxl_mux : DVI_MUX
port map(
PXLCLK => pxlclk_p_int,
PXLCLK2X => pxlclk2x_int,
PXL_DAT => x"FF0000",
DATA => DVI_DATA,
RESET_N => reset_n
);
------------OUTPUT BUFFERS (CLOCK FORWARDING)------------
ODDR_pxlclk_p : ODDR2
generic map(
DDR_ALIGNMENT => "NONE",
INIT => '0',
SRTYPE => "SYNC")
port map(
Q => PXLCLK_P, --output to positive output
C0 => pxlclk_p_int, --differential input
C1 => pxlclk_n_int,
CE => '1', --chip enable tied high
D0 => '1',
D1 => '0',
R => '0',
S => '0'
);
ODDR_pxlclk_n : ODDR2
generic map(
DDR_ALIGNMENT => "NONE",
INIT => '0',
SRTYPE => "SYNC")
port map(
Q => PXLCLK_N, --output to negative output
C0 => pxlclk_n_int,
C1 => pxlclk_p_int,
CE => '1',
D0 => '1',
D1 => '0',
R => '0',
S => '0'
);
out2_bufg : BUFG port map(I => pxlclk, O => pxlclk_p_int); --ERROR THROWN ON I/O HERE
----------------Mappings---------------------------
reset_n_input <= not BTN; --when button pressed, reset
SCL <= 'Z' when scl_internal = '1' else scl_internal;
SCL_DBG <= 'Z' when scl_internal = '1' else scl_internal;
SDA <= sda_internal;
SDA_DBG <= SDA; --copy SDA to debug line
DVIRESET_N <= reset_n; --reset DVI device
pxlclk_n_int <= not pxlclk_p_int; --create differential pair
end behavior;
DVI_MUX When I added this block to the system, the error was thrown where it previously wasnt
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
ENTITY DVI_MUX IS
PORT(
PXLCLK : IN STD_LOGIC; --pixel clock
PXLCLK2X : IN STD_LOGIC; --double freq. pixel clock
PXL_DAT : IN STD_LOGIC_VECTOR(23 downto 0); --pixel in RGB format
DATA : OUT STD_LOGIC_VECTOR(11 downto 0); --
RESET_N : IN STD_LOGIC
);
END ENTITY DVI_MUX;
architecture RTL of DVI_Mux is
begin
mux_proc : process(PXLCLK2X)
begin
if falling_edge(PXLCLK2X) then
if PXLCLK = '0' then -- if pxlclk low, load first half of pixel
DATA <= PXL_DAT(23 downto 16) & PXL_DAT(11 downto 8);
else --else load second half
DATA <= PXL_DAT(15 downto 12) & PXL_DAT(7 downto 0);
end if;
if RESET_N = '0' then --if reset active7
DATA <= (others => '1');
end if;
end if;
end process;
end architecture RTL;
This doesn't directly answer your question, but it looks like you're trying to use a DDR output primitive to drive an external differential clock pin. This is a good thing to do, but the way you have done it seems unconventional. The standard way to do this would look more like this:
EDIT: I've realised that I misunderstood the question, and have incorporated the differential output instantiation from @StuartVivian
pxclk_inverted <= not pxlclk;
ODDR_pxlclk_p : ODDR2
generic map(
DDR_ALIGNMENT => "NONE",
INIT => '0',
SRTYPE => "SYNC")
port map(
Q => PXLCLK_OUT,
C0 => pxlclk,
C1 => pxclk_inverted,
CE => '1',
D0 => '1',
D1 => '0',
R => '0',
S => '0'
);
inst_obufds : OBUFDS
generic map (
IOSTANDARD=>"LVDS_25"
)
port map
(
O => PXLCLK_OUT_P,
OB => PXLCLK_OUT_N,
I => PXLCLK_OUT
);
In IO assignment, PXLCLK_OUT_N/P will then be set to use a differential IO standard. In a graphical pin assignment window, this port will then use two pins, and will only allow you to assign them to a valid positive/negative pair. What you're trying to do is manually create the positive and negative signals before the DDR output primitive, which is not the way it's supposed to work.
I think if you use this technique, and get rid of your BUFG
, your problem should go away. If not, maybe update the question with this, and whatever the new problem might be.
Now that you've updated the question, I can see that your pixel output data also seems to be a DDR bus. You are trying to infer a DDR output behavior by implementing a multiplexer using a clock signal as the select line.
The more standard way to do this would be to instantiate n DDR output primitives, one for each bit of the parallel DDR output. According to the latest VHDL standard (VHDL2008) it is possible to infer a DDR output, but the problem with this is that this technique does not yet have widespread toolchain support.