In the tensorflow API docs they use a keyword called logits
. What is it? A lot of methods are written like:
tf.nn.softmax(logits, name=None)
If logits
is just a generic Tensor
input, why is it named logits
?
Secondly, what is the difference between the following two methods?
tf.nn.softmax(logits, name=None)
tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None)
I know what tf.nn.softmax
does, but not the other. An example would be really helpful.
The softmax+logits simply means that the function operates on the unscaled output of earlier layers and that the relative scale to understand the units is linear. It means, in particular, the sum of the inputs may not equal 1, that the values are not probabilities (you might have an input of 5). Internally, it first applies softmax to the unscaled output, and then computes the cross entropy of those values vs. what they "should" be as defined by the labels.
tf.nn.softmax
produces the result of applying the softmax function to an input tensor. The softmax "squishes" the inputs so that sum(input) = 1
, and it does the mapping by interpreting the inputs as log-probabilities (logits) and then converting them back into raw probabilities between 0 and 1. The shape of output of a softmax is the same as the input:
a = tf.constant(np.array([[.1, .3, .5, .9]]))
print s.run(tf.nn.softmax(a))
[[ 0.16838508 0.205666 0.25120102 0.37474789]]
See this answer for more about why softmax is used extensively in DNNs.
tf.nn.softmax_cross_entropy_with_logits
combines the softmax step with the calculation of the cross-entropy loss after applying the softmax function, but it does it all together in a more mathematically careful way. It's similar to the result of:
sm = tf.nn.softmax(x)
ce = cross_entropy(sm)
The cross entropy is a summary metric: it sums across the elements. The output of tf.nn.softmax_cross_entropy_with_logits
on a shape [2,5]
tensor is of shape [2,1]
(the first dimension is treated as the batch).
If you want to do optimization to minimize the cross entropy AND you're softmaxing after your last layer, you should use tf.nn.softmax_cross_entropy_with_logits
instead of doing it yourself, because it covers numerically unstable corner cases in the mathematically right way. Otherwise, you'll end up hacking it by adding little epsilons here and there.
Edited 2016-02-07:
If you have single-class labels, where an object can only belong to one class, you might now consider using tf.nn.sparse_softmax_cross_entropy_with_logits
so that you don't have to convert your labels to a dense one-hot array. This function was added after release 0.6.0.