haskellauthenticationfunctional-programmingtype-theorycurry-howard

Curry Howard correspondence and equality


A while ago I read that the function type a -> b corresponds to the relation a ≤ b, or is it a ≥ b? This makes sense to me because two types are isomorphic if we have a bijection between them (i.e. (a ≈ b) ≡ (a -> b, b -> a)). Similarly, (a = b) ≡ (a ≤ b) ∧ (a ≥ b).

I know that this is not the Curry-Howard-Lambek correspondence (i.e. the correspondence between type theory, logic and category theory). It's the correspondence between type theory and something else. I want to know learn more about this correspondence. Could somebody point me in the right direction?

I know that this doesn't seem like a programming question but it is related to programming and I'm hoping that some functional programmer knows more about it and can point me in the right direction.


Solution

  • Every pre-ordered set forms a category. Let (S, «) be a pre-ordered set. Define a category C whose objects are the elements of S and with Hom(a, b) inhabited by (a, b) if a « b and uninhabited otherwise. Define composition the only way you possibly can. The category laws follow immediately from the transitivity and reflexivity of the pre-order.

    A lattice, in particular, will form a category admitting finite products and coproducts. A bounded lattice will form one with initial and final objects.

    Types and functions in a sufficiently well-behaved functional language also form a category with finite products and coproducts, and initial and final objects. So if you squint out to a categorical blur, these things will start to look vaguely similar.