I have a column in my pandas dataframe:
Start Date
1/7/13
1/7/13
1/7/13
16/7/13
16/7/13
When I convert it into a date format, I am getting the following error:
data['Start Date']= pd.to_datetime(data['Start Date'],dayfirst=True)
...
...
/Library/Python/2.7/site-packages/pandas/tseries/tools.pyc in _convert_listlike(arg, box, format, name)
381 return DatetimeIndex._simple_new(values, name=name, tz=tz)
382 except (ValueError, TypeError):
--> 383 raise e
384
385 if arg is None:
ValueError: Unknown string format
What am I missing here?
I think the problem is in data - a problematic string exists. So you can try check length of the string in column Start Date
:
import pandas as pd
import io
temp=u"""Start Date
1/7/13
1/7/1
1/7/13 12 17
16/7/13
16/7/13"""
data = pd.read_csv(io.StringIO(temp), sep=";", parse_dates=False)
#data['Start Date']= pd.to_datetime(data['Start Date'],dayfirst=True)
print data
Start Date
0 1/7/13
1 1/7/1
2 1/7/13 12 17
3 16/7/13
4 16/7/13
#check, if length is more as 7
print data[data['Start Date'].str.len() > 7]
Start Date
2 1/7/13 12 17
Or you can try to find these problematic row different way e.g. read only part of the datetime and check parsing datetime:
#read first 3 rows
data= data.iloc[:3]
data['Start Date']= pd.to_datetime(data['Start Date'],dayfirst=True)
But this is only tips.
EDIT:
Thanks joris for suggestion add parameter errors ='coerce'
to to_datetime
:
temp=u"""Start Date
1/7/13
1/7/1
1/7/13 12 17
16/7/13
16/7/13 12 04"""
data = pd.read_csv(io.StringIO(temp), sep=";")
#add parameter errors coerce
data['Start Date']= pd.to_datetime(data['Start Date'], dayfirst=True, errors='coerce')
print data
Start Date
0 2013-07-01
1 2001-07-01
2 NaT
3 2013-07-16
4 NaT
#index of data with null - NaT to variable idx
idx = data[data['Start Date'].isnull()].index
print idx
Int64Index([2, 4], dtype='int64')
#read csv again
data = pd.read_csv(io.StringIO(temp), sep=";")
#find problematic rows, where datetime is not parsed
print data.iloc[idx]
Start Date
2 1/7/13 12 17
4 16/7/13 12 04