language-agnosticlogicbooleanxorboolean-expression

XOR of three values


What is the simplest way to do a three-way exclusive OR?

In other words, I have three values, and I want a statement that evaluates to true IFF only one of the three values is true.

So far, this is what I've come up with:

((a ^ b) && (a ^ c) && !(b && c)) || ((b ^ a) && (b ^ c) && !(a && c)) || ((c ^ a) && (c ^ b) && !(a && b))

Is there something simpler to do the same thing?


Here's the proof that the above accomplishes the task:

a = true; b = true; c = true
((a ^ b) && (a ^ c) && !(b && c)) || ((b ^ a) && (b ^ c) && !(a && c)) || ((c ^ a) && (c ^ b) && !(a && b))
=> false

a = true; b = true; c = false
((a ^ b) && (a ^ c) && !(b && c)) || ((b ^ a) && (b ^ c) && !(a && c)) || ((c ^ a) && (c ^ b) && !(a && b))
=> false

a = true; b = false; c = true
((a ^ b) && (a ^ c) && !(b && c)) || ((b ^ a) && (b ^ c) && !(a && c)) || ((c ^ a) && (c ^ b) && !(a && b))
=> false

a = true; b = false; c = false
((a ^ b) && (a ^ c) && !(b && c)) || ((b ^ a) && (b ^ c) && !(a && c)) || ((c ^ a) && (c ^ b) && !(a && b))
=> true

a = false; b = true; c = true
((a ^ b) && (a ^ c) && !(b && c)) || ((b ^ a) && (b ^ c) && !(a && c)) || ((c ^ a) && (c ^ b) && !(a && b))
=> false

a = false; b = true; c = false
((a ^ b) && (a ^ c) && !(b && c)) || ((b ^ a) && (b ^ c) && !(a && c)) || ((c ^ a) && (c ^ b) && !(a && b))
=> true

a = false; b = false; c = true
((a ^ b) && (a ^ c) && !(b && c)) || ((b ^ a) && (b ^ c) && !(a && c)) || ((c ^ a) && (c ^ b) && !(a && b))
=> true

a = false; b = false; c = false
((a ^ b) && (a ^ c) && !(b && c)) || ((b ^ a) && (b ^ c) && !(a && c)) || ((c ^ a) && (c ^ b) && !(a && b))
=> false

Solution

  • For exactly three terms, you can use this expression:

    (a ^ b ^ c) && !(a && b && c)
    

    The first part is true iff one or three of the terms are true. The second part of the expression ensures that not all three are true.

    Note that the above expression does NOT generalize to more terms. A more general solution is to actually count how many terms are true, so something like this:

    int trueCount =
       (a ? 1 : 0) +
       (b ? 1 : 0) +
       (c ? 1 : 0) +
       ... // more terms as necessary 
    
    return (trueCount == 1); // or some range check expression etc