I have written the following function to calculate a check digit in R.
verhoeffCheck <- function(x)
{
## calculates check digit based on Verhoeff algorithm
## note that due to the way strsplit works, to call for vector x, use sapply(x,verhoeffCheck)
## check for string since leading zeros with numbers will be lost
if (class(x)!="character"){stop("Must enter a string")}
#split and convert to numbers
digs <- strsplit(x,"")[[1]]
digs <- as.numeric(digs)
digs <- rev(digs) ## right to left algorithm
## tables required for D_5 group
d5_mult <- matrix(c(
0:9,
c(1:4,0,6:9,5),
c(2:4,0:1,7:9,5:6),
c(3:4,0:2,8:9,5:7),
c(4,0:3,9,5:8),
c(5,9:6,0,4:1),
c(6:5,9:7,1:0,4:2),
c(7:5,9:8,2:0,4:3),
c(8:5,9,3:0,4),
9:0
),10,10,byrow=T)
d5_perm <- matrix(c(
0:9,
c(1,5,7,6,2,8,3,0,9,4),
c(5,8,0,3,7,9,6,1,4,2),
c(8,9,1,6,0,4,3,5,2,7),
c(9,4,5,3,1,2,6,8,7,0),
c(4,2,8,6,5,7,3,9,0,1),
c(2,7,9,3,8,0,6,4,1,5),
c(7,0,4,6,9,1,3,2,5,8)
),8,10,byrow=T)
d5_inv <- c(0,4:1,5:9)
## apply algoritm - note 1-based indexing in R
d <- 0
for (i in 1:length(digs)){
d <- d5_mult[d+1,(d5_perm[(i%%8)+1,digs[i]+1])+1]
}
d5_inv[d+1]
}
In order to run on a vector of strings, sapply
must be used. This is in part because of the use of strsplit
, which returns a list of vectors. This does impact on the performance even for only moderately sized inputs.
How could this function be vectorized?
I am also aware that some performance is lost in having to create the tables in each iteration. Would storing these in a new environment be a better solution?
If your input strings can contain different numbers of characters, then I don't see any way round lapply
calls (or a plyr
equivalent). The trick is to move them inside the function, so verhoeffCheck
can accept vector inputs. This way you only need to create the matrices once.
verhoeffCheckNew <- function(x)
{
## calculates check digit based on Verhoeff algorithm
## check for string since leading zeros with numbers will be lost
if (!is.character(x)) stop("Must enter a string")
#split and convert to numbers
digs <- strsplit(x, "")
digs <- lapply(digs, function(x) rev(as.numeric(x)))
## tables required for D_5 group
d5_mult <- matrix(c(
0:9,
c(1:4,0,6:9,5),
c(2:4,0:1,7:9,5:6),
c(3:4,0:2,8:9,5:7),
c(4,0:3,9,5:8),
c(5,9:6,0,4:1),
c(6:5,9:7,1:0,4:2),
c(7:5,9:8,2:0,4:3),
c(8:5,9,3:0,4),
9:0
),10,10,byrow=T)
d5_perm <- matrix(c(
0:9,
c(1,5,7,6,2,8,3,0,9,4),
c(5,8,0,3,7,9,6,1,4,2),
c(8,9,1,6,0,4,3,5,2,7),
c(9,4,5,3,1,2,6,8,7,0),
c(4,2,8,6,5,7,3,9,0,1),
c(2,7,9,3,8,0,6,4,1,5),
c(7,0,4,6,9,1,3,2,5,8)
),8,10,byrow=T)
d5_inv <- c(0,4:1,5:9)
## apply algorithm - note 1-based indexing in R
sapply(digs, function(x)
{
d <- 0
for (i in 1:length(x)){
d <- d5_mult[d + 1, (d5_perm[(i %% 8) + 1, x[i] + 1]) + 1]
}
d5_inv[d+1]
})
}
Since d
depends on what it was previously, the is no easy way to vectorise the for
loop.
My version runs in about half the time for 1e5 strings.
rand_string <- function(n = 12)
{
paste(sample(as.character(0:9), sample(n), replace = TRUE), collapse = "")
}
big_test <- replicate(1e5, rand_string())
tic()
res1 <- unname(sapply(big_test, verhoeffCheck))
toc()
tic()
res2 <- verhoeffCheckNew(big_test)
toc()
identical(res1, res2) #hopefully TRUE!
See this question for tic
and toc
.
Further thoughts:
You may want additional input checking for ""
and other strings that return NA
when converted in numeric.
Since you are dealing exclusively with integers, you may get a slight performance benefit from using them rather than doubles. (Use as.integer
rather than as.numeric
and append L
to the values in your matrices.)