I find topic about Simplex method here Alter Simplex Algorithm to Minimize on objective function NOT maximize But answer didn`t help. When I change from
double[] variables = { 13.0, 23.0 };
to
double[] variables = { -13.0, -23.0 };
The program dont calculate(no Exception), it print first step and that`s all. Could somebody help me with alter simplex method from maximize to minimize?
code:
import java.util.*;
public class Simplex
{
private static final double EPSILON = 1.0E-10;
private double[][] tableaux;
private int numOfConstraints;
private int numOfVariables;
private int[] basis;
/**
* Constructor for objects of class Simplex
*/
public Simplex()
{
double[][] thisTableaux = {
{ 5.0, 15.0 },
{ 4.0, 4.0 },
{ 35.0, 20.0 },
};
double[] constraints = { 480.0, 160.0, 1190.0 };
double[] variables = { -13.0, -23.0 };
numOfConstraints = constraints.length;
numOfVariables = variables.length;
tableaux = new double[numOfConstraints+1][numOfVariables+numOfConstraints+1];
//adds all elements from thisTableaux to tableaux
for(int i=0; i < numOfConstraints; i++)
{
for(int j=0; j < numOfVariables; j++)
{
tableaux[i][j] = thisTableaux[i][j];
}
}
//adds a slack variable for each variable there is and sets it to 1.0
for(int i=0; i < numOfConstraints; i++)
{
tableaux[i][numOfVariables+i] = 1.0;
}
//adds variables into the second [] of tableux
for(int j=0; j < numOfVariables; j++)
{
tableaux[numOfConstraints][j] = variables[j];
}
//adds constraints to first [] of tableaux
for(int k=0; k < numOfConstraints; k++)
{
tableaux[k][numOfConstraints+numOfVariables] = constraints[k];
}
basis = new int[numOfConstraints];
for(int i=0; i < numOfConstraints; i++)
{
basis[i] = numOfVariables + i;
}
show();
optimise();
assert check(thisTableaux, constraints, variables);
}
public void optimise() {
while(true) {
int q = findLowestNonBasicCol();
if(q == -1) {
break;
}
int p = getPivotRow(q);
if(p == -1) throw new ArithmeticException("Linear Program Unbounded");
pivot(p, q);
basis[p] = q;
}
}
public int findLowestNonBasicCol() {
for(int i=0; i < numOfConstraints + numOfVariables; i++)
{
if(tableaux[numOfConstraints][i] > 0) {
return i;
}
}
return -1;
}
public int findIndexOfLowestNonBasicCol() {
int q = 0;
for(int i=1; i < numOfConstraints + numOfVariables; i++)
{
if(tableaux[numOfConstraints][i] > tableaux[numOfConstraints][q]) {
q = i;
}
}
if(tableaux[numOfConstraints][q] <= 0) {
return -1;
}
else {
return q;
}
}
/**
* Finds row p which will be the pivot row using the minimum ratio rule.
* -1 if there is no pivot row
*/
public int getPivotRow(int q) {
int p = -1;
for(int i=0; i < numOfConstraints; i++) {
if (tableaux[i][q] <=0) {
continue;
}
else if (p == -1) {
p = i;
}
else if((tableaux[i][numOfConstraints+numOfVariables] / tableaux[i][q] < tableaux[p][numOfConstraints+numOfVariables] / tableaux[p][q])) {
p = i;
}
}
You might want to look into the Dual Simplex Method (or Duality Theory). If the standard form of the primal problem is:
Maximize = 13*X1 + 23*X2;
with constraints:
5*X1 + 15*X2 <= 480;
4*X1 + 4*X2 <= 160;
35*X1 + 20*X2 <= 1190;
X1 >= 0;
X2 >= 0;
Then the dual problem is:
Minimize = 480*Y1 + 160*Y2 + 1190*Y3;
with constraints:
5*Y1 + 4*Y2 + 35*Y3 >= 13;
15*Y1 + 4*Y2 + 20*Y3 >= 23;
Y1 >= 0;
Y2 >= 0;
Y3 >= 0;
I tested both of these problems in LINGO and get the same answer for both (Z = 800, X1 = 12, X2 = 28 -- Y1 = 1, Y2 = 2, Y3 = 0).