I have been going crazy trying to make it work but nothing been on this for the past 6 hours and still didn't solve it :/
so this the top module
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity Test is
Port ( CLKI : in STD_LOGIC;
HSO : out STD_LOGIC;
VSO : out STD_LOGIC;
RO,GO,BO : out STD_LOGIC);
end Test;
architecture Behavioral of Test is
component CLK_25Mhz_Divider
Port ( CLK : in STD_LOGIC;
CLK_OUT : out STD_LOGIC);
end component;
component VGA_Sync
Port ( CLK : in STD_LOGIC;
HS : out STD_LOGIC;
VS : out STD_LOGIC;
R,G,B : out STD_LOGIC);
end component;
signal CLKBE: STD_LOGIC;
begin
CLK_Divider_1: CLK_25Mhz_Divider port map ( CLK => CLKI,
CLK_OUT => CLKBE);
VGA_S1: VGA_Sync port map ( CLK => CLKBE,
HS => HSO,
VS => VSO,
R => RO,
G => GO,
B => BO );
end Behavioral;
the clock divider
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity CLK_25MHz_Divider is
Port ( CLK : in STD_LOGIC;
CLK_OUT : out STD_LOGIC);
end CLK_25MHz_Divider;
architecture Behavioral of CLK_25MHz_Divider is
BEGIN
PROCESS(CLK)
VARIABLE COUNT : INTEGER:=0;
VARIABLE TEMP : STD_LOGIC:='0';
BEGIN
IF RISING_EDGE(CLK)THEN
COUNT:=COUNT+1;
IF COUNT=2 THEN
TEMP:=NOT TEMP;
COUNT:=0;
END IF;
END IF;
CLK_OUT<=TEMP;
END PROCESS;
end Behavioral;
The VGA signal generation module
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity VGA_Sync is
Port ( CLK : in STD_LOGIC;
HS : out STD_LOGIC;
VS : out STD_LOGIC;
R,G,B : out STD_LOGIC);
end VGA_Sync;
architecture Behavioral of VGA_Sync is
begin
process(CLK)
Variable countH : Integer := 0;
Variable countV : Integer := 0;
begin
if (CLK'EVENT and CLK = '1') then
if countH < 800 then
countH := countH + 1;
else
countH := 0;
if countV < 500 then
countV := countV + 1;
else
countV := 0;
end if;
end if;
if countH >= 16 and countH < 112 then
HS <= '0';
else
HS <= '1';
end if;
if countV >= 10 and countV < 12 then
VS <= '0';
else
VS <= '1';
end if;
if (countH < 160) or (countV < 45) then
R <= '0';
G <= '0';
B <= '0';
else
R <= '1';
G <= '0';
B <= '1';
end if;
end if;
end process;
end Behavioral;
so tell me your thoughts on what is wrong with the code
Because you haven't actually describe the problem and because I had a testbench for a 25 MHz clocked vga generator that only required changing the type for r, g and b, I ran you sync_vga against the testbench:
library ieee;
use ieee.std_logic_1164.all;
entity vga_sync_tb is
end entity;
architecture foo of vga_sync_tb is
signal clk: std_logic := '0';
signal hs: std_logic;
signal vs: std_logic;
signal r,g,b: std_logic;
begin
DUT:
entity work.vga_sync
port map (
clk => clk,
hs => hs,
vs => vs,
r => r,
g => g,
b => b
);
CLOCK:
process
begin
wait for 20 ns; -- clock period 25 MHz = 40 ns;
clk <= not clk;
if now > 20 ms then -- one frame time plus a bit
wait;
end if;
end process;
end architecture;
It gave a vertical sync rate around 60 Hz:
Zooming in and measuring between two HS edges shows a horizontal rate of around 31.17 KHz.
You have horizontal and vertical blanking intervals and your R, G, and B does what your code says.
That sort of leaves the clock divider or something platform related.
Because a testbench for the clock is simple:
library ieee;
use ieee.std_logic_1164.all;
entity clock_tb is
end entity;
architecture foo of clock_tb is
signal clk: std_logic := '0';
signal clk25: std_logic;
begin
DUT:
entity work.clk_25mhz_divider
port map (
clk => clk,
clk_out => clk25
);
CLOCK:
process
begin
wait for 10 ns; -- half the period of 50 MHz
clk <= not clk;
if now > 130 ns then
wait;
end if;
end process;
end architecture;
It demonstrates Martin Zabel's answer:
That your divide by two actually divides by four. giving a period of 80 ns (12.5 MHz).
This demonstrates the usefulness of simulation and in simulation it can also be helpful to use signals instead of variables which have no history. Variables don't have a projected output waveform and he simulator has to attach extra code to display them in a waveform.
The simulation performance increase using variables instead of signals is traded for the ability to display them and there is no interesting distinction in synthesis.