I want to implement Heap's algorithm in Scheme (Gambit).
I read his paper and checked out lots of resources but I haven't found many functional language implementations.
I would like to at least get the number of possible permutations.
The next step would be to actually print out all possible permutations.
Here is what I have so far:
3 (define (heap lst n)
4 (if (= n 1)
5 0
6 (let ((i 1) (temp 0))
7 (if (< i n)
8 (begin
9 (heap lst (- n 1))
10 (cond
11 ; if even: 1 to n -1 consecutively cell selected
12 ((= 0 (modulo n 2))
13 ;(cons (car lst) (heap (cdr lst) (length (cdr lst)))))
14 (+ 1 (heap (cdr lst) (length (cdr lst)))))
15
16 ; if odd: first cell selectd
17 ((= 1 (modulo n 2))
18 ;(cons (car lst) (heap (cdr lst) (length (cdr lst)))))
19 (+ 1 (heap (car lst) 1)))
20 )
21 )
22 0
23 )
24 )
25 )
26 )
27
28 (define myLst '(a b c))
29
30 (display (heap myLst (length myLst)))
31 (newline)
I'm sure this is way off but it's as close as I could get.
Any help would be great, thanks.
Here's a 1-to-1 transcription of the algorithm described on the Wikipedia page. Since the algorithm makes heavy use of indexing I've used a vector as a data structure rather than a list:
(define (generate n A)
(cond
((= n 1) (display A)
(newline))
(else (let loop ((i 0))
(generate (- n 1) A)
(if (even? n)
(swap A i (- n 1))
(swap A 0 (- n 1)))
(if (< i (- n 2))
(loop (+ i 1))
(generate (- n 1) A))))))
and the swap
helper procedure:
(define (swap A i1 i2)
(let ((tmp (vector-ref A i1)))
(vector-set! A i1 (vector-ref A i2))
(vector-set! A i2 tmp)))
Testing:
Gambit v4.8.4
> (generate 3 (vector 'a 'b 'c))
#(a b c)
#(b a c)
#(c a b)
#(a c b)
#(b c a)
#(c b a)