I am trying to solve a question in which I need to find out the number of possible ways to make a team of two members (note: a team can have at most two person). After making this code, it works properly, but in some test cases it shows a floating point error ad I can't find out what it is exactly.
Input:
1st line: Number of test cases
2nd line: number of total person
#include <iostream>
using namespace std;
long C(long n, long r)
{
long f[n + 1];
f[0] = 1;
for (long i = 1; i <= n; i++)
{
f[i] = i * f[i - 1];
}
return f[n] / f[r] / f[n - r];
}
int main()
{
long n, r, m, t;
cin >> t;
while(t--)
{
cin >> n;
r = 1;
cout << C(n, min(r, n - r)) + 1 << endl;
}
return 0;
}
You aren't getting a floating point exception. You are getting a divide by zero exception. Because your code is attempting to divide by the number 0 (which can't be done on a computer).
When you invoke C(100, 1)
the main loop that initializes the f
array inside C
increases exponentially. Eventually, two values are multiplied such that i * f[i-1]
is zero due to overflow. That leads to all the subsequent f[i] values being initialized to zero. And then the division that follows the loop is a division by zero.
Although purists on these forums will say this is undefined, here's what's really happening on most 2's complement architectures. Or at least on my computer....
At i==21
:
f[20]
is already equal to 2432902008176640000
21 * 2432902008176640000
overflows for 64-bit signed, and will typically become -4249290049419214848
So at this point, your program is bugged and is now in undefined behavior.
At i==66
f[65]
is equal to 0x8000000000000000
. So 66 * f[65]
gets calculated as zero for reasons that make sense to me, but should be understood as undefined behavior.
With f[66]
assigned to 0, all subsequent assignments of f[i]
become zero as well. After the main loop inside C
is over, the f[n-r]
is zero. Hence, divide by zero error.
Update
I went back and reverse engineered your problem. It seems like your C
function is just trying to compute this expression:
N!
-------------
R! * (N-R)!
Which is the "number of unique sorted combinations"
In which case instead of computing the large factorial of N!, we can reduce that expression to this:
n
[ ∏ i ]
n-r
--------------------
R!
This won't eliminate overflow, but will allow your C
function to be able to take on larger values of N and R to compute the number of combinations without error.
But we can also take advantage of simple reduction before trying to do a big long factorial expression
For example, let's say we were trying to compute C(15,5). Mathematically that is:
15!
--------
10! 5!
Or as we expressed above:
1*2*3*4*5*6*7*8*9*10*11*12*13*14*15
-----------------------------------
1*2*3*4*5*6*7*8*9*10 * 1*2*3*4*5
The first 10 factors of the numerator and denominator cancel each other out:
11*12*13*14*15
-----------------------------------
1*2*3*4*5
But intuitively, you can see that "12" in the numerator is already evenly divisible by denominators 2 and 3. And that 15 in the numerator is evenly divisible by 5 in the denominator. So simple reduction can be applied:
11*2*13*14*3
-----------------------------------
1 * 4
There's even more room for greatest common divisor reduction, but this is a great start.
Let's start with a helper function that computes the product of all the values in a list.
long long multiply_vector(std::vector<int>& values)
{
long long result = 1;
for (long i : values)
{
result = result * i;
if (result < 0)
{
std::cout << "ERROR - multiply_range hit overflow" << std::endl;
return 0;
}
}
return result;
}
Not let's implement C
as using the above function after doing the reduction operation
long long C(int n, int r)
{
if ((r >= n) || (n < 0) || (r < 0))
{
std::cout << "invalid parameters passed to C" << std::endl;
return 0;
}
// compute
// n!
// -------------
// r! * (n-r)!
//
// assume (r < n)
// Which maps to
// n
// [∏ i]
// n - r
// --------------------
// R!
int end = n;
int start = n - r + 1;
std::vector<int> numerators;
std::vector<int> denominators;
long long numerator = 1;
long long denominator = 1;
for (int i = start; i <= end; i++)
{
numerators.push_back(i);
}
for (int i = 2; i <= r; i++)
{
denominators.push_back(i);
}
size_t n_length = numerators.size();
size_t d_length = denominators.size();
for (size_t n = 0; n < n_length; n++)
{
int nval = numerators[n];
for (size_t d = 0; d < d_length; d++)
{
int dval = denominators[d];
if ((nval % dval) == 0)
{
denominators[d] = 1;
numerators[n] = nval / dval;
}
}
}
numerator = multiply_vector(numerators);
denominator = multiply_vector(denominators);
if ((numerator == 0) || (denominator == 0))
{
std::cout << "Giving up. Can't resolve overflow" << std::endl;
return 0;
}
long long result = numerator / denominator;
return result;
}