standard-libraryagda

Lexicographic ordering of pairs/lists in Agda using the standard library


The Agda standard library contains some modules Relation.Binary.*.(Non)StrictLex (currently only for Product and List). We can use these modules to easily construct an instance of, for example, IsStrictTotalOrder for pairs of natural numbers (i.e. ℕ × ℕ).

open import Data.Nat as ℕ using (ℕ; _<_)
open import Data.Nat.Properties as ℕ
open import Relation.Binary using (module StrictTotalOrder; IsStrictTotalOrder)
open import Relation.Binary.PropositionalEquality using (_≡_)
open import Relation.Binary.Product.StrictLex using (×-Lex; _×-isStrictTotalOrder_)
open import Relation.Binary.Product.Pointwise using (_×-Rel_)

ℕ-isSTO : IsStrictTotalOrder _≡_ _<_
ℕ-isSTO = StrictTotalOrder.isStrictTotalOrder ℕ.strictTotalOrder

ℕ×ℕ-isSTO : IsStrictTotalOrder (_≡_ ×-Rel _≡_) (×-Lex _≡_ _<_ _<_)
ℕ×ℕ-isSTO = ℕ-isSTO ×-isStrictTotalOrder ℕ-isSTO

This creates an instance using the pointwise equality _≡_ ×-Rel _≡_. In the case of propositional equality, this should be equivalent to using just propositional equality.

Is there an easy way of converting the instance above to an instance of type IsStrictTotalOrder _≡_ (×-Lex _≡_ _<_ _<_), using normal propositional equality?


Solution

  • The kit required isn't too hard to assemble:

    open import Data.Product
    open import Function using (_∘_; case_of_)
    open import Relation.Binary
    
    _⇔₂_ : ∀ {a ℓ₁ ℓ₂} {A : Set a} → Rel A ℓ₁ → Rel A ℓ₂ → Set _
    _≈_ ⇔₂ _≈′_ = (∀ {x y} → x ≈ y → x ≈′ y) × (∀ {x y} → x ≈′ y → x ≈ y)
    
    -- I was unable to write this nicely using Data.Product.map... 
    -- hence it is moved here to a toplevel where it can pattern-match
    -- on the product of proofs
    transform-resp : ∀ {a ℓ₁ ℓ₂ ℓ} {A : Set a} {≈ : Rel A ℓ₁} {≈′ : Rel A ℓ₂} {< : Rel A ℓ} →
                     ≈ ⇔₂ ≈′ →
                     < Respects₂ ≈ → < Respects₂ ≈′
    transform-resp (to ,  from) = λ { (resp₁ , resp₂) → (resp₁ ∘ from , resp₂ ∘ from) }
    
    transform-isSTO : ∀ {a ℓ₁ ℓ₂ ℓ} {A : Set a} {≈ : Rel A ℓ₁} {≈′ : Rel A ℓ₂} {< : Rel A ℓ} →
                      ≈ ⇔₂ ≈′ →
                      IsStrictTotalOrder ≈ < → IsStrictTotalOrder ≈′ <
    transform-isSTO {≈′ = ≈′} {< = <} (to , from) isSTO = record
      { isEquivalence = let open IsEquivalence (IsStrictTotalOrder.isEquivalence isSTO)
                        in record { refl = to refl
                                  ; sym = to ∘ sym ∘ from
                                  ; trans = λ x y → to (trans (from x) (from y))
                                  }
      ; trans = IsStrictTotalOrder.trans isSTO
      ; compare = compare
      ; <-resp-≈ = transform-resp (to , from) (IsStrictTotalOrder.<-resp-≈ isSTO)
      }
      where
        compare : Trichotomous ≈′ <
        compare x y with IsStrictTotalOrder.compare isSTO x y
        compare x y | tri< a ¬b ¬c = tri< a (¬b ∘ from) ¬c
        compare x y | tri≈ ¬a b ¬c = tri≈ ¬a (to b) ¬c
        compare x y | tri> ¬a ¬b c = tri> ¬a (¬b ∘ from) c
    

    Then we can use this to solve your original problem:

    ℕ×ℕ-isSTO′ : IsStrictTotalOrder _≡_ (×-Lex _≡_ _<_ _<_)
    ℕ×ℕ-isSTO′ = transform-isSTO (to , from) ℕ×ℕ-isSTO
      where
        open import Function using (_⟨_⟩_)
        open import Relation.Binary.PropositionalEquality
    
        to : ∀ {a b} {A : Set a} {B : Set b}
             {x x′ : A} {y y′ : B} → (x , y) ⟨ _≡_ ×-Rel _≡_ ⟩ (x′ , y′) → (x , y) ≡ (x′ , y′)
        to (refl , refl) = refl
    
        from : ∀ {a b} {A : Set a} {B : Set b}
               {x x′ : A} {y y′ : B} → (x , y) ≡ (x′ , y′) → (x , y) ⟨ _≡_ ×-Rel _≡_ ⟩ (x′ , y′)
        from refl = refl , refl